Example 5.19 Design a spur gear drive to transmit 22.5 kW at 900 r.p.m. Speed eduction is 2.5.) Materials for pinion and (wheel are C 15 steel and cast iron grade 30 respectively. Take pressure angle of 20° and working life of the gears as 10000 hrs . sem .
Given Data: $(P)=22.5 \mathrm{~kW} ; \mathrm{N}_{1}=900 \mathrm{r} . \mathrm{p} . \mathrm{m} . ;(i)=2.5 ;(\phi)=20^{\circ} ; \mathrm{N}=10000 \mathrm{hrs} . \quad 16 \mathrm{mark}$
To find Design a spur gear.

* Pinion \rightarrow C 15 steel
* Wheel \rightarrow Cast Iron grade 30
© Solution : Since the materials for pinion and wheel are different, therefore we have to design the pinion first and check both pinion and wheel.
(1.) Gear ratio: (i) $=2.5$
$i=\frac{N_{1}}{N_{2}}=\frac{z_{e}}{Z_{1}}$
(2.) Material selection :

Pinion : C15 steel, case hardened to 55 RC and core hardness < 350, and
Wheel : C.I. grade 30.
... (Given)
(3. Gear life: $\quad \mathbb{N}=10000 \mathrm{hrs}$

Gear life in terms of number of cycles is given by

$$
N=10000 \times 60 \times 900=54 \times 10^{7} \text { cycles }
$$

(4.) Design torque $\left[M_{t}\right]$:

where

$$
M_{t}=\frac{60 \times P}{2 \pi N_{1}}=\frac{60 \times 22.5 \times 10^{3}}{2 \pi \times 900}=238.73 \mathrm{~N}-\mathrm{m}, \text { and }
$$

$$
\text { Design torque, }\left[M_{t}\right]=238.73 \times 1.3=310.35 \mathrm{~N}-\mathrm{m} \rightarrow M_{t} \quad \cdots \text { (assume) }
$$

(5.) Calculation of $E_{e q},\left[\sigma_{b}\right]$ and $\left[\sigma_{f}\right]$:

(ii) To find $E_{\text {eq }}$: From Table 5.20 , for pinion steel and cast iron $\left(>280.14 \mathrm{~N} / \mathrm{mm}^{c}\right.$, ${ }^{\circ}$,
(iii) To find $/ \sigma_{b} /$: The design bending stress $\left[\sigma_{b}\right]$ is given by

$$
\left[\sigma_{b}\right]=\frac{1.4 \times \mathbb{K}_{b b}}{(n)\left(\mathbb{K}_{)}\right.} \times \sigma_{-1} \text { assuming rotation in one direction only }
$$

820 \checkmark From Table 5.14, for steel $(\mathrm{HB} \leq 350)$ and $\left.\mathrm{N} \geq 10^{7}, \widehat{\mathrm{~K}_{6}}\right)=1$ Life
8.19 \checkmark From Table 5.17, for steel case hardened, factor of safety $(n)=2$.
8.19 \checkmark From Table 5.15, for steel case hardened, stress concentration factor, $\mathrm{K}_{\sigma}=1.2$.
B.19 \checkmark From Table 5.16, for forged steel, $\sigma_{-1}=0.25\left(\sigma_{u}+\sigma_{y}\right)+50$. Endurance lmit

40 But from Table 5.3, for $C_{15}, \sigma_{\psi}=490 \mathrm{~N} / \mathrm{mm}^{2}$ and $\sigma_{2}=240 \mathrm{~N} / \mathrm{mm}^{2}$.

Then,

$$
\left[\sigma_{b}\right]=\frac{1.4 \times 1}{2 \times 1.2} \times 232.5=135.625 \mathrm{~N} / \mathrm{mm}^{2}
$$

(iii) To find $\left./ \sigma_{c}\right]$: The design contact stress $\left[\sigma_{c}\right]$ is given by $8.16 \quad\left[\sigma_{c}\right]=C_{R} \cdot \mathrm{HRC} \cdot \mathrm{K}_{c 1}$ Pinion
where

$$
\begin{aligned}
8^{16}\left(\mathrm{C}_{\mathrm{R}}\right) & =22, \text { for } \mathrm{C} 15 \text { case hardened steel, from Table } 5.18, \\
8 \cdot \mathrm{HRC}) & =55 \text { to } 63, \text { for } \mathrm{C} 15 \text { cont }
\end{aligned}
$$

$$
\begin{aligned}
8_{0}^{6}(\mathrm{HRC} & =55 \text { to } 63 \text {, for C } 15 \text { steel, from Table } 5.18 \text {, and } \\
B_{1}+\widehat{K}_{c_{i}} & =0.585, \text { for } \mathrm{HB}>350
\end{aligned}
$$

$$
\begin{aligned}
B_{B}+\mathrm{K}_{c_{i}} & =0.585, \text { for } \mathrm{HB}>350, \mathrm{~N} \geq 25 \times 10^{7} \text {, from } \text {, and } \\
{\left[\sigma_{c}\right] } & =20
\end{aligned}
$$

$$
\left[\sigma_{c}\right]=22 \times 63 \times 0.585=810.81 \mathrm{~N} / \mathrm{mm}^{2} .
$$

(6.) Calculation of centre dir $\quad 810.81 \mathrm{~N} / \mathrm{mm}^{2}$
ps 8.13
We know that,

$$
\text { 8. } 3 \text { Cent distance (a) : }
$$

poon $8.14 \psi=\frac{b}{a}=0.3$
$a \geq(2.5+1) \sqrt[3]{\left(\frac{0.74}{810.81}\right)^{2} \times \frac{1.7 \times 10^{5} \times 310.35 \times 10^{3}}{2.5 \times 0.3}}$
$a \geq 135.94 \mathrm{~mm}$ or $(a)=136 \mathrm{~mm}$.
$a=136$

$$
\begin{aligned}
& 8.3 / \text { lent! } \\
& \sqrt{b} \sqrt[3]{\left(\frac{0.74}{\left[\sigma_{c}\right]}\right)^{2} \times \frac{\mathrm{E}_{e q}\left[\mathrm{M}_{t}\right]}{i \psi}}
\end{aligned}
$$

(7.) To find z_{1} and z_{2} :

(i) For 20° full depth system, select $\left(z_{1}\right)=18$.
(ii) $\frac{8 . z_{2}^{2}}{=i \times z_{1}}=2.5 \times 18=45 \rightarrow Z_{P S G}$
(8.) Calculation of module $(m): 8.2 \mathrm{esq}$

We know that, ${ }^{B}$

$$
m=\frac{2 a}{z_{1}+z_{2}}=\frac{2 \times 136}{18+45}=4.32 \mathrm{~mm}
$$

8.2

From Table 5.8, the nearest higher standard module, $\mathrm{mb}=5 \mathrm{~mm}$.
9. Revision of centre distance :

$$
\text { B. } 2 e=\frac{m\left(z_{1}+z_{2}\right)}{2}=\frac{5(18+45)}{2}=157.5 \mathrm{~mm}
$$

(10.) Calculation of b, d_{1}, v and ψ_{p} :
\checkmark Face width $(b) \cdot \frac{8,4}{b=\psi \cdot a}=0.3 \times 157.5=47.25 \mathrm{~mm}$.
\checkmark Pitch diameter of pinion $\left.\left(d_{1}\right)=d_{1}=m \cdot z_{1}\right)^{22}=5 \times 18=90 \mathrm{~mm}$.
\checkmark Pitch line velocity $(v) \quad v=\frac{\pi d_{1} \mathrm{~N}_{1}}{60}=\frac{\pi \times 90 \times 10^{-3} \times 900}{60}=4.24 \mathrm{~m} / \mathrm{s} \rightarrow$ (V)
$\stackrel{8.15}{ } \Psi_{p}=\frac{b}{d_{1}}=\frac{47.25}{90}=0.525$.

(11.) Selection of quality of gear:

From Table 5.22 , for \quad. $v=4.24 \mathrm{~m} / \mathrm{s}$, IS quality 8 gears are selected. 5.62
(12.) Revision of design torque $\left[M_{t}\right]$:
\checkmark Revise K : From Table 5.11, for $\psi_{p}=0.525, \mathrm{~K} \approx 1.03$.
\checkmark Revise K_{d} : From Table 5.12 , for IS quality 8 and $v=4.24 \mathrm{~m} / \mathrm{s}, \mathrm{K}_{d}=1.4$.
\checkmark Revise $\left[M_{t}\right]$:

$$
\begin{aligned}
{\left[\mathrm{M}_{t}\right] } & =\mathrm{M}_{t} \cdot \mathrm{~K} \cdot \mathrm{~K}_{d} \\
& =238.73 \times 1.03 \times 1.4=344.24 \mathrm{~N}-\mathrm{m}
\end{aligned}
$$

13.) Check for bending :

Calculation of induced bending stress, σ_{b} : Ps

$$
\sigma^{3} \sigma_{b}=\frac{(i+1)}{a \cdot m \cdot b \cdot y}\left[\mathrm{M}_{t}\right]
$$

8.13 月
where $\quad 8.18 y=$ Form factor $=0.377$, for $z_{1}=18$, from Table 5.13.

$$
\sigma_{b}=\frac{(2.5+1) \times 344.24 \times 10^{3}}{157.5 \times 5 \times 47.25 \times 0.377}=85.89 \mathrm{~N} / \mathrm{mm}^{2}
$$

\checkmark We find $\sigma_{b}<\left[\sigma_{\mathrm{B}}\right]$. Therefore the design is satisfactory.
14. Check for wear strength :

- Calculation of induced confact stress, σ_{c}

Pach
8.13

$$
\begin{aligned}
\sigma_{i} & \left.=0.74 \frac{i+1}{a} \sqrt{\frac{i+1}{i b} \times \mathrm{E}_{e q}[\mathrm{M},]}\right) \\
& =0.74\left(\frac{2.5+1}{157.5}\right) \sqrt{\left(\frac{2.5+1}{2.5 \times 47.25}\right) \times 1.7 \times 10^{5} \times 344.24 \times 10^{3}} \\
& =684.76 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

, We find $\sigma_{c}<\left|\sigma_{c}\right|$. Therefore the design is safe and satisfactory.

15. Check for wheel:

(i) Calculation of $/ \sigma_{b} \|_{\text {wheel }}$ and $/ \sigma_{c} \|_{\text {wheel }}$:

Wheel material : CI grade 30.
Wheel speed

$$
\mathrm{N}_{2}=\frac{\mathrm{N}_{1}}{i}=\frac{900}{2.5}=360 \text { r.p.m. }
$$

Life of wheel $=10000 \mathrm{hrs}=10,000 \times 60 \times 360=21.6 \times 10^{7}$ cycles
To find $/ \sigma_{b} \|_{\text {wheel }}:$ The design bending stress for wheel is given by $\left[\sigma_{b}\right]_{\text {wheel }}=\frac{1.4 \times \mathrm{K}_{b l}}{n \cdot \mathrm{~K}_{\sigma}} \times \sigma_{-1}$, assuming rotation in one direction only.
\checkmark From Table 5.14, for cast iron wheel, (K) $\left.\mathrm{K}_{b l}\right)=\sqrt[9]{\frac{10^{7}}{\mathrm{~N}}}=\sqrt[9]{\frac{10^{7}}{21.6 \times 10^{7}}}=0.918$. From Table 5.17, for cast iron, (n) $=2$.
\checkmark From Table 5.15, for cast iron, $\widehat{K}_{\sigma}=1.2$.
\checkmark From Table 5.16, for cast iron, $\sigma_{-1}=0.45 \sigma_{u}$.
But from Table 5.3, for cast iron, $\sigma_{u}=290 \mathrm{~N} / \mathrm{mm}^{2}$.
e. $19 . C_{1}=\sigma_{-1}=0.45+\sigma_{4}$
$\sigma_{-1}=0.45 \times 290=130.5 \mathrm{~N} / \mathrm{mm}^{2}$
Then,

$$
\left[\sigma_{b}\right]_{\text {wheel }}=\frac{1.4 \times 0.918}{2 \times 1.2} \times 130.5=69.88 \mathrm{~N} / \mathrm{mm}^{2}
$$

To find $/ \sigma_{c} \int_{\text {wheel }}$: The design contact stress for wheel is given by
s.b $\left[\sigma_{c}\right]_{\text {wheel }}=\mathrm{C}_{\mathrm{B}} \cdot \mathrm{HB} \cdot \mathrm{K}_{c l}$
where $C_{B}=2.3$, for cast iron grade 30 , from Table 5.18, B. ${ }^{16} \mathrm{HB}=200$ to 260 , for cast iron, from Table 5.18, and
$B_{n}\left(\widetilde{K}_{c 1}\right)=\sqrt[6]{\frac{10^{7}}{\mathrm{~N}}}=\sqrt[6]{\frac{10^{7}}{21.6 \times 10^{7}}}=0.879$, for cast iron, from Table 5.19.
$\therefore\left[\sigma_{c}\right]_{\text {wheel }}=2.3 \times 260 \times 0.879=525.64 \mathrm{~N} / \mathrm{mm}^{2}$
(ii) Check for bending :

- Calculation of induced bending stress for wheel $\sigma_{b 2}$:

$$
\sigma_{b 1} \times y_{1}=\sigma_{b 2} \times y_{2}
$$

where $\sigma_{b 1}$ and $\sigma_{b 2}=$ Induced bending stresses in the pinion and wheel respectively, and y_{1} and $y_{2}=$ Form factors for pinion and wheel respectively.
From Table 5.13, $\quad y_{2}=0.471$, for $z_{2}=45$.

$$
\sigma_{b 1}=85.89 \mathrm{~N} / \mathrm{mm}^{2} \text { and } y_{1}=0.377 \quad \ldots(\text { already calculated })
$$

$$
\begin{aligned}
85.89 \times 0.377 & =\sigma_{b 2} \times 0.471 \\
\sigma_{b 2} & =68.75 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

or
We find $\sigma_{b 2}<\left[\sigma_{b}\right]_{\text {wheel }}$. Therefore the design is satisfactory.
(iii) Check for wear strength : Since contact area is same, therefore $\sigma_{c \text { wheel }}=\sigma_{c \text { pinion }}$ $=684.76 \mathrm{~N} / \mathrm{mm}^{2}$. Here $\sigma_{c \text { wheel }}>\left[\sigma_{c}\right]_{\text {wheel }}$. It means, wheel does not have the required wear resistance. So, in order to decrease the induced contact stress, increase the face width (b) value or in order to increase the design contact stress, increase the surface hardness, say to 340 HB . Increasing the surface hardness will give $\left[\sigma_{c}\right]=2.3 \times 340 \times 0.879=687.34$ $\mathrm{N} / \mathrm{mm}^{2}$. Now we find $\sigma_{c}<\left[\sigma_{c}\right]$. So the design is safe and satisfactory.
(16.) Calculation of basic dimensions of pinion and wheel: Refer Table 5.10.
\checkmark Module : $\boldsymbol{m}=\mathbf{5} \mathbf{~ m m}$
\checkmark Face width : $(b)=\mathbf{4 7 . 2 5} \mathbf{~ m m}$
\checkmark Height factor: $\left.f_{0}\right)=1$ for full depth teeth.
\checkmark Bottom clearance : (c) $=0.25 \mathrm{~m}=0.25 \times 5=1.25 \mathrm{~mm}$.
\checkmark Tooth depth : $(h)=2.25 \mathrm{~m}{ }^{822}=2.25 \times 5=11.25 \mathrm{~mm}$.
\checkmark Pitch circle diameter: $d_{1}=m \cdot z_{1}=5 \times 18=90 \mathrm{~mm}$; and
B. $22 d_{2}=m \cdot z_{2}=5 \times 45=225 \mathrm{~mm}$.
\checkmark Tip diameter:

$$
\begin{aligned}
& 8.22\left(\begin{array}{l}
d_{a 1}
\end{array}\right.=\left(z_{1}+2 f_{0}\right) m=(18+2 \times 1) 5=\mathbf{1 0 0} \mathrm{mm} ; \text { and } \\
& d_{a 2}=\left(z_{2}+2 f_{0}\right) m=(45+2 \times 1) 5=\mathbf{2 3 5} \mathbf{~ m m} \\
& d_{f 1}=\left(z_{1}-2 f_{0}\right) m-2 c \\
&=(18-2 \times 1) 5-2 \times 1.25=77.5 \mathrm{~mm} ; \text { and } \\
& 822 \\
& d_{f 2}=\left(z_{2}-2 f_{0}\right) m-2 c \\
&=(45-2 \times 1) 5-2 \times 1.25=212.5 \mathrm{~mm}
\end{aligned}
$$

\checkmark Root diameter :

