Example 1.3 It is required to select a flat-belt drive for a fan running at 360 r.p.m. which is driven by a $10 \mathrm{~kW}, 1440$ r.p.m. motor. The belt drive is open-type and space available for a centre distance of 2 m approximately. The diameter of a driven pulley is 1000 mm .

Given Data : $\mathrm{N}_{1}=1440$ r.p.m. $; \mathrm{N}_{2}=360$ r.p.m. ; $\mathrm{P}=10 \mathrm{~kW}=10 \times 10^{3} \mathrm{~W}$;

$$
C=2 \mathrm{~m} ;(\mathrm{D})=1000 \mathrm{~mm} .
$$

To find: Select (or design) a open flat belt drive.
Solution : The given arrangement is shown in Fig.1.14.

1. Calculation of pulley diameters :

Driven pulley diameter, $D=1000 \mathbf{~ m m ~} 1440$ r.p.m.

\therefore Driver pulley diameter, $d=\frac{\mathrm{D}}{4}$

$$
=\frac{1000}{4}=250 \mathrm{~mm}
$$

Consulting Table 1.5, the recommended driver pulley diameter $=\mathbf{2 5 0} \mathbf{m m}$ Ans. $\boldsymbol{\sim}$
2. Calculation of design power in $\boldsymbol{k W}$:

$$
\text { Design } \mathrm{kW}=\frac{\text { Rated } \mathrm{kW} \times \text { Load correction factor }\left(\mathrm{K}_{s}\right)}{\text { Arc of contact factor }\left(\mathrm{K}_{\alpha}\right) \times \text { Small pulley factor }\left(\mathrm{K}_{d}\right)}
$$

(i) Rated $\mathrm{kW}=10 \mathrm{~kW}$
(ii) Referring to Table 1.9, load correction factor, $\mathrm{K}_{s}=1.2$ for steady load.
(iii) To find arc of contact factor $\left(\mathrm{K}_{\alpha}\right)$:

$$
7^{4} \text { Arc of contact }=180^{\circ}-\left(\frac{\mathrm{D}-d}{\mathrm{C}}\right) \times 60^{\circ}
$$

$$
=180^{\circ}-\left(\frac{1000-250}{2000}\right) \times 60^{\circ}=157.5^{\circ}
$$

Consulting Table 1.10, arc of contact factor for $157.5^{\circ}, \mathrm{K}_{\alpha} \approx 1.08$.
(iv) Consulting Table 1.11, small pulley factor, $\mathrm{K}_{d}=0.7$

$$
\therefore \quad \text { Design } \mathrm{kW}=\frac{10 \times 1.2}{1.08 \times 0.7}=\mathbf{1 5 . 8 7 3} \mathbf{k W} \text { Ans. }
$$

3. Selection of belt :

Consulting Table 1.12, HI-SPEED duck belting is selected. Its capacity is given as 0.023 $\mathrm{kW} / \mathrm{mm} / \mathrm{ply}$.
4. Load rating correction :

Velocity of the belt, $\mathrm{V}=\frac{\pi d \mathrm{~N}_{1}}{60}=\frac{\pi \times 0.25 \times 1440}{60}=18.85 \mathrm{~m} / \mathrm{s}$
Load rating at $\mathrm{V} \mathrm{m} / \mathrm{s}=$ Load rating at $10 \mathrm{~m} / \mathrm{s} \times \frac{\mathrm{V}}{10}$
$\therefore \quad$ Load rating at $18.85 \mathrm{~m} / \mathrm{s}=$ Load rating at $10 \mathrm{~m} / \mathrm{s} \times(18.85 / 10)$

$$
=0.023 \times(18.85 / 10)=0.04335 \mathrm{~kW} / \mathrm{mm} / \mathrm{ply}
$$

5. Determination of belt width :

For 250 mm smaller pulley diameter and velocity of $18.85 \mathrm{~m} / \mathrm{s}$, consulting Table 1.8, the number of plies can be selected as 5 .

$$
\begin{aligned}
\therefore \quad \text { Width of belt } & =\frac{\text { Design power }}{\text { Load rating } \times \text { No. of plies }} \\
& =\frac{15.873}{0.04335 \times 5}=73.23 \mathrm{~mm}
\end{aligned}
$$

Consulting Table 1.13, the calculated belt width should be rounded off to the standard belt width.
\therefore For 5 ply belt, standard belt width $=\mathbf{7 6} \mathbf{m m}$ Ans. -

6. Determination of pulley width :

Consulting Table 1.6(a), the pulley width is given by
Pulley width $=$ Belt width $+13 \mathrm{~mm}=76+13=89 \mathrm{~mm}$
\therefore Referring Table $1.6(\mathrm{~b})$, the standard pulley width is $\mathbf{9 0} \mathbf{~ m m}$ Ans.

7. Calculation of length of the belt (L) :

$$
\begin{aligned}
& \text { Calculation of length of the belt }(\mathrm{L} \text {) } \\
& \qquad \begin{array}{l}
\mathrm{L}=2 \mathrm{C}+\frac{\pi}{2}(\mathrm{D}+d)+\frac{(\mathrm{D}-d)^{2}}{4 \mathrm{C}} \\
=2 \times 2000+\frac{\pi}{2}(1000+250)+\frac{(1000-250)^{2}}{4 \times 2000}=\mathbf{6 0 3 3 . 8} \mathrm{mm} \text { Ans. }
\end{array}
\end{aligned}
$$

Example 1.7 A flat belt is required to transmit 35 kW from a pulley of 1.5 m effective diameter running at 300 r.p.m. The angle of lap is 165° and $\mu=0.3$. Determine, taking centrifugal tension into account, width of the belt required. It is given that the belt thickness is 9.5 mm , density of its material is $1.1 \mathrm{Mg} / \mathrm{m}^{3}$ and the related permissible working stress is 2.5 MPa .

Given Data: $(\mathrm{P})=35 \mathrm{~kW}=35 \times 10^{3} \mathrm{~W}$; (d) $=1.5 \mathrm{~m} ;(\mathrm{N})=300$ r.p.m.;
($)=165^{\circ}=165^{\circ} \times \frac{\pi}{180^{\circ}}=2.88 \mathrm{rad} ;(\mathrm{H})=0.3 ;(t)=9.5 \mathrm{~mm} ;(\mathrm{Pa})=1.1 \mathrm{Mg} / \mathrm{m}^{3}=1100 \mathrm{~kg} / \mathrm{m}^{3}$
$\sigma=2.5 \mathrm{MPa}=2.5 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$.
To find: Width of the belt(b).)
(). Solution: Velocity of belt, $v=\frac{\pi d \mathrm{~N}}{60}=\frac{\pi \times 1.5 \times 300}{60}=23.56 \mathrm{~m} / \mathrm{s}$.

Let
We know that,
$b=$ Belt width in mm .

$$
\begin{align*}
\mathrm{P} & =\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right) v \\
35 \times 10^{3} & =\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right) 23.56 \text { or } \mathrm{T}_{1}-\mathrm{T}_{2}=1485.45 \tag{i}\\
\frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}}=e^{\mu \alpha} & =e^{0.3 \times 2.88}=2.373 \text { or } \mathrm{T}_{1}=2.373 \mathrm{~T}_{2} \tag{ii}
\end{align*}
$$

Solving (i) and (ii),

$$
\left(T_{1}\right)=2568 \mathrm{~N} \text { and }\left(T_{2}\right)=1082.19 \mathrm{~N}
$$

Cross-sectional area of the belt $=b \times t=9.5 b \mathrm{~mm}^{2}=9.5 b \times 10^{-6} \mathrm{~m}^{2}$
We know that mass of the belt per meter length,

$$
\begin{aligned}
m & =\text { Density } \times \text { Area } \times \text { Length }=\rho \times(b \times t) \times l \\
& =1100 \times 9.5 b \times 10^{-6} \times 1=0.01045 b \mathrm{~kg} / \mathrm{m}
\end{aligned}
$$

$\therefore \quad$ Centrifugal tension, $\mathrm{T}_{\mathrm{C}}=m v^{2}=0.01045 b(23.56)^{2}=5.8 b \mathrm{~N}$
and
Maximum tension in the belt, $T=\sigma(b \times t)$
$=2.5 \times 10^{6} \times 9.5 b \times 10^{-6}=23.75 b \mathrm{~N}$
We also know that

$$
\mathrm{T}=\mathrm{T}_{1}+\mathrm{T}_{\mathrm{D}}
$$

$23.75 b=2568+5.8 b$ or $b=143 \mathrm{~mm}$
Consulting Table 1.13, standard width of the belt $=\mathbf{1 5 2} \mathbf{~ m m ~ A n s . ~}$

