Example 4.1 A truck equipped with a 9.5 kW engine uses a roller chain as the final drive to the rear axle. The driving sprocket runs at 900 r.p.m. and the driven sprocket at 400 r.p.m. with a centre distance of approximately 600 mm . Select the roller chain.

Given Data: $\mathbb{N}=9.5 \mathrm{~kW} ; \mathbb{N}_{1}=900 \mathrm{r} . \mathrm{p} . \mathrm{m} . ; \mathbb{N}_{2}=400 \mathrm{r} . \mathrm{p} . \mathrm{m} . ;\left(a_{0}\right)=600 \mathrm{~mm}$.
To find: Select (i.e., design) the roller chain.
Solution :

1. Determination of the transmission ratio (i) :

Transmission ratio, $i=\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}=\frac{900}{400}=2.25$
(Since the transmission ratio can be calculated from the given data, therefore we need not to consult Table 4.2)
2. Selection of number of teeth on the driver sprocket $\left(z_{1}\right)$:

From Table 4.3, $z_{1}=27$ (for $i=2$ to 3) is selected.
3. Determination of number of teeth on the driven sprocket $\left(z_{2}\right)$:

$$
z_{2}=i \times z_{1}=2.25 \times 27=60.75 \approx 61
$$

Recommended value, $z_{2 \max }=100$ to 120

$$
\therefore \quad z_{2}=61 \text { is satisfactory }
$$

(4. Selection of standard pitch (p) :

We know that
Centre distance, $a=(30-50) p$
Maximum pitch, $p_{\max }=\frac{a}{30}=\frac{600}{30}=20 \mathrm{~mm}$
Minimum pitch, $p_{\text {min }}=\frac{a}{50}=\frac{600}{50}=12 \mathrm{~mm}$
Any standard pitch between 12 mm and 20 mm can be chosen. But to get a quicke solution, it is always preferred to take the standard pitch closer to $p_{\max }$. Refer Table 4.4.
$\therefore \quad$ Standard pitch, $\boldsymbol{p}=\mathbf{1 5 . 8 7 5} \mathbf{m m}$ is chosen.

5. Selection of the chain :

Assume the chain to be duplex. Consulting Table 4.5, the selected chain number is 10A-2 / DR50.
6. Calculation of total load on the driving side of the chain $\left(P_{T}\right)$:
(i) Tangential force $\left(P_{\downarrow}\right)$:

$$
\mathrm{P}_{t}=\frac{1020 \mathrm{~N}}{v}
$$

where

$$
\begin{aligned}
\mathrm{N} & =\text { Transmitted power in } \mathrm{kW}=9.5 \mathrm{~kW} \\
v & =\text { Chain velocity in } \mathrm{m} / \mathrm{s} \\
& =\frac{z_{1} \times p \times \mathrm{N}_{1}}{60 \times 1000}=\frac{27 \times 15.875 \times 900}{60 \times 1000}=6.43 \mathrm{~m} / \mathrm{s} \\
\mathrm{P}_{t} & =\frac{1020 \mathrm{~N}}{v}=\frac{1020 \times 9.5}{6.43}=1507 \mathrm{~N}
\end{aligned}
$$

(ii) Centrifugal tension $\left(P_{c}\right)$:

$$
\mathrm{P}_{c}=m v^{2}
$$

From Table 4.5,

$$
m=1.78 \mathrm{~kg} / \mathrm{m}
$$

$$
\therefore \quad \mathrm{P}_{c}=1.78(6.43)^{2}=73.59 \mathrm{~N}
$$

(iii) Tension due to sagging $\left(P_{s}\right)$:

$$
\mathrm{P}_{s}=k \cdot w \cdot a
$$

From Table 4.6, $\quad k=6$ (for horizontal)

$$
\begin{aligned}
w & =m g=1.78 \times 9.81=17.46 \mathrm{~N} \\
a & =\text { Initial centre distance }=0.6 \mathrm{~m} \\
\mathrm{P}_{s} & =6 \times 17.46 \times 0.6=62.82 \mathrm{~N}
\end{aligned}
$$

(iv) Total load $\left(P_{T}\right): \quad \mathrm{P}_{\mathrm{T}}=\mathrm{P}_{t}+\mathrm{P}_{c}+\mathrm{P}_{s}$

$$
=1507+73.59+62.82=1643.4 \mathrm{~N}
$$

7. Calculation of service factor $\left(k_{s}\right)$:

We know that the service factor,

$$
k_{s}=k_{1} \cdot k_{2} \cdot k_{3} \cdot k_{4} \cdot k_{5} \cdot k_{6}
$$

From Table 4.7, $\quad k_{1}=1.25 \quad$ (for load with mild shocks)
From Table 4.8,
$k_{2}=1 \quad$ (for adjustable supports)
From Table 4.9,
$k_{3}=1 \quad\left(\because\right.$ we have used $a_{p}=(30$ to 50$\left.) p\right)$
From Table 4.10, $\quad k_{4}=1 \quad$ (for horizontal drive)
From Table 4.11, $\quad k_{5}=1 \quad$ (for drop lubrication)
From Table 4.12, $\quad k_{6}=1.25 \quad$ (for 16 hours / day running)
$\therefore \quad k_{s}=1.25 \times 1 \times 1 \times 1 \times 1 \times 1.25=1.5625$

8. Calculation of design load:

$$
\overline{\text { Design load }}=\mathrm{P}_{\mathrm{T}} \times k_{s}=1643.4 \times 1.5625=2567.8 \mathrm{~N}
$$

9. Calculation of working factor of safety $\left(F S_{w}\right)$:

$$
\mathrm{FS}_{w}=\frac{\text { Breaking load Q from Table 4.5 }}{\text { Design load }}=\frac{44400}{2567.8}=17.29
$$

10. Check for factor of safety:

Consulting Table 4.13, for smaller sprocket speed of 900 r.p.m. and pitch 15.875 mm , the required minimum factor of safety is 11 . Therefore the working factor of safety is greater than the recommended minimum factor of safety. Thus the design is safe and satisfactory.
11. Check for the bearing stress in the roller:

We know that $\quad \sigma_{\text {roller }}=\frac{\mathrm{P}_{t} \times k_{s}}{\mathrm{~A}}$; where $\mathrm{A}=140 \mathrm{~mm}^{2}$ from Table 4.5.

$$
=\frac{1507 \times 1.5625}{140}=16.8 \mathrm{~N} / \mathrm{mm}^{2}
$$

Consulting Table 4.14, for smaller sprocket speed of $900 \mathrm{r} . \mathrm{p} . \mathrm{m}$. and pitch 15.875 mm , the allowable bearing stress is $22.4 \mathrm{~N} / \mathrm{mm}^{2}$. Therefore the induced stress is less than the allowable bearing stress. Thus the design is safe and satisfactory.
12. Calculation of length of chain (L)
where

$$
\text { Number of links, } l_{p}=2 a_{p}+\left(\frac{z_{1}+z_{2}}{2}\right)+\frac{\left[\left(z_{2}-z_{1}\right) / 2 \pi\right]^{2}}{a_{p}}
$$

$$
\begin{aligned}
a_{p} & =\frac{a_{0}}{p}=\frac{\text { Centre distance }}{\text { pitch }}=\frac{600}{15.875}=37.795 \\
l_{p} & =2(37.795)+\left(\frac{27+61}{2}\right)+\frac{[(61-27) / 2 \pi]^{2}}{37.795}=120.36 \\
& \approx 122 \text { links (rounded off to an even number) }
\end{aligned}
$$

\therefore Actual length of chain, $\mathrm{L}=l_{p} \times p=122 \times 15.875=1936.75 \mathrm{~mm}$

13. Calculation of exact centre distance (a):

We know that $\quad a=\frac{e+\sqrt{e^{2}-8 \mathrm{M}}}{4} \times p$
where

$$
e=l_{p}-\left(\frac{z_{1}+z_{2}}{2}\right)=122-\left(\frac{27+61}{2}\right)=78
$$

and

$$
\begin{array}{ll}
\text { and } & M=\left(\frac{z_{2}-z_{1}}{2 \pi}\right)^{2}=\left(\frac{61-27}{2 \pi}\right)^{2}=29.28 \\
\therefore & a=\frac{78+\sqrt{78^{2}-8 \times 29.28}}{4} \times 15.875=613.11 \mathrm{~mm}
\end{array}
$$

Decrement in centre distance for an initial sag $=0.01 a=0.01(613.11)=6.1311 \mathrm{~mm}$ $\therefore \quad$ Exact centre distance $=613.11-6.1311=606.978 \mathbf{m m}$

14. Calculation of sprocket diameters :

Smaller sprocket :

$$
\text { Pcd of smaller sprocket, } \begin{aligned}
d_{1} & =\frac{p}{\sin \left(180 / z_{1}\right)} \\
& =\frac{15.875}{\sin (180 / 27)}=\mathbf{1 3 6 . 7 4} \mathbf{~ m m}
\end{aligned}
$$

and Sprocket outside diameter, $d_{01}=d_{1}+0.8 d_{r}$ where

$$
d_{r}=\text { Diameter of roller, from Table } 4.5=10.16 \mathrm{~mm}
$$

$$
\therefore \quad d_{01}=136.74+0.8 \times 10.16=\mathbf{1 4 4 . 8 6 8} \mathbf{~ m m}
$$

Larger sprocket :

$$
\text { Pcd of larger sprocket, } \begin{aligned}
d_{2} & =\frac{p}{\sin \left(180 / z_{2}\right)}=\frac{15.875}{\sin (180 / 61)} \\
& =\mathbf{3 0 8 . 3 8} \mathbf{~ m m}
\end{aligned}
$$

and Sprocket outside diameter, $d_{02}=d_{2}+0.8 d_{r}$

$$
=308.38+0.8 \times 10.16=316.51 \mathrm{~mm}
$$

Example 4.2 The transporter of a heat treatment furnace is driven by a 4.5 kW , 1440 r.p.m. induction motor through a (chain drive with a speed reduction ratio of 2.4. The transmission is horizontal with bath type of lubrication. Rating is continuous with 3 shifts per day. Design the complete chain drive.

Given Data $: ~\left(\mathrm{~N}=4.5 \mathrm{~kW} ; \quad \mathrm{N}_{1}\right)=1440$ r.p.m. ; $\quad i=2.4$.

To find: Design the chain drive.

Solution :

1. Transmission ratio, $i=2.4$ (Given) $\quad \therefore \quad \mathrm{N}_{2}=\frac{\mathrm{N}_{1}}{i}=\frac{1440}{2.4}=600$ r.p.m.
2. To find z_{1} : From Table 4.3, $z_{1}=\mathbf{2 7}$ (for $i=2$ to 3) is chosen.
(3.) To find z_{2} : $\quad z_{2}=i \times z_{1}=2.4 \times 27=64.8 \approx 65$

Recommended $z_{2 \text { max }}=100$ to 120. $\therefore z_{2}=65$ is satisfactory.
4. Standard pitch (p) : Since the centre distance is not given, we have to assume the initial centre distance, say $a=500 \mathrm{~mm}$.

We know that $\quad a=(30-50) p$
$\therefore \quad p_{\text {max }}=\frac{a}{30}=\frac{500}{30}=16.6 \mathrm{~mm}$
and

$$
p_{\min }=\frac{a}{50}=\frac{500}{50}=10 \mathrm{~mm}
$$

From Table 4.4, in between 10 and 16.6 mm , a standard pitch, $\boldsymbol{p}=\mathbf{1 5 . 8 7 5} \mathbf{~ m m}$ is chosen.
5. Selection of chain : Assume the chain to be simplex.

From Table 4.5, the $\mathbf{1 0 A - 1 / R 5 0}$ chain number is chosen.
6. Calculation of total load on the driving side $\left(P_{T}\right)$:

$$
\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{t}+\mathrm{P}_{c}+\mathrm{P}_{s}
$$

$$
\begin{equation*}
\mathrm{P}_{t}=\frac{1020 \mathrm{~N}}{v} \tag{i}
\end{equation*}
$$

where

$$
\mathrm{N}=\text { Transmitted power in } \mathrm{kW}=4.5 \mathrm{~kW}
$$

(ii)

$$
v=\text { Velocity of chain in } \mathrm{m} / \mathrm{s}
$$

From Table 4.5,

$$
P_{t}=\frac{1020 \times 4.5}{10.287}=446.19 \mathrm{~N}
$$

$$
\mathrm{P}_{c}=m v^{2}
$$

\therefore

$$
m=1.01 \mathrm{~kg} / \mathrm{m}
$$

$$
P_{c}=1.01(10.287)^{2}=106.88 \mathrm{~N}
$$

(iii)

$$
\mathrm{P}_{s}=k \cdot w \cdot a
$$

From Table 4.6,

$$
\begin{aligned}
k & =6 \quad(\text { for horizontal) } \\
w & =m g=1.01 \times 9.81=9.908 \mathrm{~N} / \mathrm{m} \text { and } a=0.5 \mathrm{~m}
\end{aligned}
$$

$$
\therefore \quad \mathrm{P}_{s}=6 \times 9.908 \times 0.5=29.72 \mathrm{~N}
$$

(iv) \therefore Total load, $\mathrm{P}_{\mathrm{T}}=466.19+106.88+29.72=582.79 \mathrm{~N}$
7. Service factor: $\quad k_{s}=k_{1} \cdot k_{2} \cdot k_{3} \cdot k_{4} \cdot k_{5} \cdot k_{6}$

From Table 4.7,

$$
k_{1}=1.25 \quad \text { (for load with mild shocks) }
$$

From Table 4.8, $\quad k_{2}=1 \quad$ (for adjustable supports)
From Table 4.9, $\quad k_{3}=1 \quad$ (since we have used $a=(30$ to 50$) p$)
From Table 4.10, $\quad k_{4}=1 \quad$ (for horizontal drive)
From Table 4.11, $\quad k_{5}=\dot{0} .8 \quad$ (for bath type lubrication)
From Table 4.12, $\quad k_{6}=1.5 \quad$ (for continuous running i.e., 3 shifts $/ \mathrm{day}$)
$\therefore \quad k_{s}=1.25 \times 1 \times 1 \times 1 \times 0.8 \times 1.5=1.5$
8. Design load $=\mathrm{P}_{\mathrm{T}} \times k_{s}=582.79 \times 1.5=874.19 \mathrm{~N}$ recommended minimum value of factor of safety $\left(n^{\prime}\right)$ is 13.2 . Since the working factor of safety is greater than the recommended minimum value of factor of safety, therefore the design is safe and satisfactory.
10. Bearing stress in the roller: From Table 4.5, $\mathrm{A}=70 \mathrm{~mm}^{2}$

$$
\sigma=\frac{P_{t} \times k_{s}}{\mathrm{~A}}=\frac{446.19 \times 1.5}{70}=9.56 \mathrm{~N} / \mathrm{mm}^{2}
$$

From Table 4.14, for smaller sprocket speed $1440 \mathrm{r} . \mathrm{pm}$. and pitch 15.875 mm , the allowable bearing stress is $18.5 \mathrm{~N} / \mathrm{mm}^{2}$. Since the induced stress is less than the allowable bearing stress, the design is safe and satisfactory.

11. Actual length of chain (L) :

$$
\text { Number of links, } \begin{aligned}
l_{p} & =2 a_{p}+\left(\frac{z_{1}+z_{2}}{2}\right)+\frac{\left[\left(z_{2}-z_{1}\right) / 2 \pi\right]^{2}}{a_{p}} \\
a_{p} & =\frac{a_{0}}{p}=\frac{500}{15.875}=31.496 \\
l_{p} & =2(31.496)+\left(\frac{27+65}{2}\right)+\frac{[(65-27) / 2 \pi]^{2}}{31.496} \\
& =110.153 \approx 112 \quad \text { (rounded off to an even number) }
\end{aligned}
$$

where
$\therefore \quad$ Actual length of chain, $\mathrm{L}=l_{p} \times p=112 \times 15.875=\mathbf{1 7 7 8} \mathbf{~ m m}$

12. Exact centre distance :

where

$$
a=\frac{e+\sqrt{e^{2}-8 \mathrm{M}}}{4} \times p
$$

$$
e=l_{p}-\left(\frac{z_{1}+z_{2}}{2}\right)=112-\left(\frac{27+65}{2}\right)=66
$$

and

$$
\begin{aligned}
M & =\left[\frac{\left(z_{2}-z_{1}\right)}{2 \pi}\right]^{2}=\left(\frac{65-27}{2 \pi}\right)^{2}=36.57 \\
a & =\frac{66+\sqrt{66^{2}-8 \times 36.57}}{4} \times 15.875=514.92 \mathrm{~mm}
\end{aligned}
$$

Decrement in centre distance for an initial sag, $\Delta a=0.01 a=5.149 \mathrm{~mm}$
$\therefore \quad$ Exact centre distance $=514.92-5.149=\mathbf{5 0 9 . 7 7} \mathbf{m m}$

13. Sprocket diameters :

For smalier sprocket :

$$
\operatorname{Pcd}=\frac{p}{\sin \left(180 / z_{1}\right)}=\frac{15.875}{\sin (180 / 27)}=\mathbf{1 3 6 . 7 4} \mathbf{~ m m}
$$

and Sprocket outside diameter, $d_{01}=d_{1}+0.8 d_{r}$
From Table 4.5,

$$
d_{r}=\text { Diameter of roller }=10.16 \mathrm{~mm}
$$

\therefore

$$
d_{01}=136.74+0.8 \times 10.16=\mathbf{1 4 4 . 8 7} \mathbf{~ m m}
$$

For larger sprocket :

$$
\operatorname{Pcd}=\frac{p}{\sin \left(180 / z_{2}\right)}=\frac{15.875}{\sin (180 / 65)}=\mathbf{3 2 8 . 5 8} \mathbf{~ m m}
$$

and Sprocket outside diameter, $d_{02}=d_{2}+0.8 d_{r}=328.58+0.8 \times 10.16$

$$
=336.71 \mathrm{~mm}
$$ 10 seconds.

Given Data: Height $=60 \mathrm{~m} ; \mathrm{W}=20 \mathrm{kN}=20 \times 10^{3} \mathrm{~N} ; \hat{v}=4 \mathrm{~m} / \mathrm{sec}=240 \mathrm{~m} / \mathrm{min}$; $t=10 \mathrm{sec}$.

To find: Design a wire rope.
(-) Solution :

1. Selection of suitable wire rope : Given that the wire rope is used for an elevator, i.e., for hoisting purpose. So lets use 6×19 rope (refer Table 3.1).
2. Calculation of design load: Assuming a larger factor of safety of 15, the design load is calculated.

$$
\begin{aligned}
\text { Design load } & =\text { Load to be lifted } \times \text { Assumed factor of safety } \\
& =20 \times 15=\mathbf{3 0 0} \mathbf{k N}
\end{aligned}
$$

(3.) Selection of wire rope diameter (d) : From Table 3.4, taking the design load as the breaking strength, the wire rope diameter is selected as 25 mm .
$\therefore d=\mathbf{2 5} \mathbf{~ m m}$ for $\sigma_{u}=1600$ to $1750 \mathrm{~N} / \mathrm{mm}^{2}$ and breaking strength $=340 \mathrm{kN}$.
4. Calculation of sheave diameter (D) : From Table 3.5, for 6×19 rope and class 4 ,

$$
\frac{\mathrm{D}_{\min }}{d}=27 \text { (for velocity upto } 50 \mathrm{~m} / \mathrm{min} \text {) }
$$

Since the given lifting speed is $240 \mathrm{~m} / \mathrm{min}(=4 \mathrm{~m} / \mathrm{s})$, therefore $\mathrm{D}_{\min } / d$ ratio should be modified. Thus for every additional speed of $50 \mathrm{~m} / \mathrm{min}, \mathrm{D}_{\min } / d$ ratio has to be increased by 8%.

$$
\therefore \quad \text { Modified } \frac{\mathrm{D}_{\min }}{d}=27 \times(1.08)^{5-1}=36.73 \text { say } 40 . \quad\left[\because \frac{240}{50} \approx 5\right]
$$

The sheave diameter,

$$
\mathrm{D}=40 \times d=40 \times 25=\mathbf{1 0 0 0} \mathbf{~ m m}
$$

5. Selection of the area of useful cross-section of the rope (A): From Table 3.6, for 6×19 rope,

$$
\mathrm{A}=0.4 d^{2}=0.4(25)^{2}=250 \mathrm{~mm}^{2}
$$

6. Calculation of wire diameter $\left(d_{w}\right)$:

Wire diameter, $d_{w}=\frac{d}{1.5 \sqrt{i}}$
where

$$
i=\text { Number of strands } \times \text { Number of wires in each strand }
$$

$$
=6 \times 19=114
$$

$$
\therefore \quad d_{w}=\frac{25}{1.5 \sqrt{114}}=1.56 \mathrm{~mm}
$$

ZSelection of weight of rope $\left(W_{r}\right)$:

From Table 3.4,
Approximate mass $=2.41 \mathrm{~kg} / \mathrm{m}$
$\therefore \quad$ Weight of rope $/ \mathrm{m}=2.41 \times 9.81=23.6 \mathrm{~N} / \mathrm{m}$
and \quad Weight of rope, $\mathrm{W}_{r}=23.6 \times 60=1416 \mathrm{~N}$
8. Calculation of various loads :
(i)

Direct load, $\mathrm{W}_{d}=\mathrm{W}+\mathrm{W}_{r}=20000+1416=21416 \mathrm{~N}$
(ii)

$$
\text { Bending load, } \begin{aligned}
\mathrm{W}_{b}= & \sigma_{b} \times \mathrm{A}=\frac{\mathrm{E}_{r} \cdot d_{w}}{\mathrm{D}} \times \mathrm{A} \\
= & \frac{0.84 \times 10^{5} \times 1.56}{1000} \times 250=32760 \mathrm{~N} \\
& \quad\left[\text { Take } \mathrm{E}_{r}=0.84 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}\right]
\end{aligned}
$$

iii) Acceleration load, $\mathrm{W}_{a}=\left(\frac{\mathrm{W}+\mathrm{W}_{r}}{g}\right) a$
where

$$
\begin{aligned}
a & =\text { Acceleration of the load }=\frac{v_{2}-v_{1}}{t_{1}}=\frac{4-0}{10} \\
& =0.4 \mathrm{~m} / \mathrm{s}^{2} \\
\mathrm{~W}_{a} & =\left(\frac{20000+1416}{9.81}\right) 0.4=873.23 \mathrm{~N}
\end{aligned}
$$

(iv) Starting load $\left(\mathrm{W}_{s t}\right)$:

When there is no slack in the rope, starting load is given by

$$
\mathrm{W}_{s t}=2 \cdot \mathrm{~W}_{d}=2\left(\mathrm{~W}+\mathrm{W}_{r}\right)=2(20000+1416)=42832 \mathrm{~N}
$$

9. Calculation of effective loads on the rope:

(i) Effective load during normal working, $\mathrm{W}_{e n}=\mathrm{W}_{d}+\mathrm{W}_{b}$

$$
=21416+32760=54176 \mathrm{~N}
$$

(ii) Effective load during acceleration of the load, $\mathrm{W}_{e a}=\mathrm{W}_{d}+\mathrm{W}_{b}+\mathrm{W}_{a}$

$$
\begin{aligned}
& =21416+32760+873.23 \\
& =55049.23 \mathrm{~N} \\
& =\mathrm{W}_{b}+\mathrm{W}_{s t} \\
& =32760+42832=75592 \mathrm{~N}
\end{aligned}
$$

10. Calculation of working factor of safety $\left(F S_{w}\right)$:

Working factor of safety $=\frac{\text { Breaking load from Table } 3.4 \text { for the selected rope }}{\text { Effective load during acceleration }\left(\mathrm{W}_{e a}\right)}$

$$
=\frac{340000}{55049.23}=6.176
$$

(11. Check for safe design : From Table 3.2, for hoists and class 4, the recommende factor of safety $=6$.

Since the working factor of safety is greater than the recommended factor of safety therefore the design is safe.

