
SNS COLLEGE OF ENGINEERING
Kurumbapalayam(Po), Coimbatore – 641 107

Accredited by NAAC-UGC with ‘A’ Grade

Approved by AICTE, Recognized by UGC & Affiliated to Anna University, Chennai

Department of Artificial Intelligence and
Data Science

Course Name – Computational Thinking and
Python Programming

I Year / I Semester

Unit 1-Computational thinking and problem solving

10.Dec.2023 1

10.Dec.2023 2

Simple strategies for developing algorithm:

They are two commonly used strategies used in developing algorithm

Iteration

Recursion

Iteration

The iteration is when a loop repeatedly executes till the controlling condition becomes false

The iteration is applied to the set of instructions which we want to get repeatedly executed.

Iteration includes initialization, condition, and execution of statement within loop and update (increments and

decrements) the control variable.

A sequence of statements is executed until a specified condition is true is called iterations.

•for loop

•While loop

10.Dec.2023 3

10.Dec.2023 4

Recursions:

•A function that calls itself is known as recursion.

•Recursion is a process by which a function calls itself repeatedly until some specified condition has beensatisfied.

Algorithm for factorial of n numbers using recursion:

Main function:

Step1: Start Step2: Get n

Step3: call factorial(n) Step4: print fact Step5: Stop

Sub function factorial(n):

Step1: if(n==1) then fact=1 return fact

Step2: else fact=n*factorial(n-1) and return fact

13-Feb-23 5

Pseudo code for factorial using recursion:

Main function:

BEGIN
GET n
CALL
factorial(n)
PRINT fact
BIN

Sub function factorial(n):

IF(n==1) THEN
fact=1
RETURN fact

ELSE
RETURN fact=n*factorial(n-1)

10.Dec.2023 6

ILLUSTRATIVE PROBLEMS
Guess an integer in a range
Algorithm:
Step1: Start
Step 2: Declare n, guess
Step 3: Compute guess=input Step 4: Read guess
Step 5: If guess>n, then
Print your guess is too high Else
Step6:If guess<n, then
Print your guess is too low Else
Step 7:If guess==n,then
Print Good job Else
Nope Step 6: Stop

Pseudocode:
BEGIN
COMPUTE guess=input READ guess,
IF guess>n
PRINT Guess is high ELSE
IF guess<n
PRINT Guess is low ELSE
IF guess=n PRINT Good job ELSE
Nope END

10.Dec.2023 7

10.Dec.2023 8

PRINT min END

Find minimum in a list Algorithm:

Step 1: Start Step 2: Read n

Step 3:Initialize i=0

Step 4: If i<n, then goto step 4.1, 4.2 else goto step 5

Step4.1: Read a[i]

Step 4.2: i=i+1 goto step 4

Step 5: Compute min=a[0]

Step 6: Initialize i=1

Step 7: If i<n, then go to step 8 else goto step 10

Step 8: If a[i]<min, then goto step 8.1,8.2 else goto 8.2

Step 8.1: min=a[i]

Step 8.2: i=i+1 goto 7

Step 9: Print min

Step 10: Stop

Pseudocode:

BEGIN

READ n

FOR i=0 to n, then

READ a[i]

INCREMENT i

END FOR

COMPUTE min=a[0]

FOR i=1 to n, then

IF a[i]<min, then

CALCULATE min=a[i]

INCREMENT i

ELSE INCREMENT i

END IF-ELSE

END FOR

PRINT min

END

10.Dec.2023 9

PRINT min END

10.Dec.2023 10

PRINT min END

Insert a card in a list of sorted cards

Algorithm:

Step 1: Start Step 2: Read n

Step 3:Initialize i=0

Step 4: If i<n, then goto step 4.1, 4.2 else goto step 5

Step4.1: Read a[i]

Step 4.2: i=i+1 goto step 4

Step 5: Read item

Step 6: Calculate i=n-1

Step 7: If i>=0 and item<a[i], then go to step 7.1, 7.2 else goto step 8

Step 7.1: a[i+1]=a[i]

Step 7.2: i=i-1 goto step 7

Step 8: Compute a[i+1]=item

Step 9: Compute n=n+1

Step 10: If i<n, then goto step 10.1, 10.2 else goto step 11

Step10.1: Print a[i]

Step10.2: i=i+1 goto step 10

Step 11: Stop

Pseudocode:

BEGIN READ n

FOR i=0 to n, then

READ a[i]

INCREMENT i

END FOR

READ item

FOR i=n-1 to 0 and item<a[i], then

CALCULATE a[i+1]=a[i]

DECREMENT i

END FOR

COMPUTE a[i+1]=a[i]

COMPUTE n=n+1

FOR i=0 to n, then

PRINT a[i]

INCREMENT i

END FOR

END

10.Dec.2023 11

PRINT min END

10.Dec.2023 12

PRINT min END

Tower of Hanoi

Tower of Hanoi, is a mathematical puzzle which consists of three towers (pegs) and more than one

rings.

Tower of Hanoi is one of the best example for recursive problem solving.

Pre-condition:

These rings are of different sizes and stacked upon in an ascending order, i.e. the smaller one sits over the

larger one. There are other variations of the puzzle where the number of disks increase, but the tower

count remains the same.

Post-condition:

All the disk should be moved to the last pole and placed only in ascending order as shown

below.

Rules

The mission is to move all the disks to some another tower without violating the sequence

of arrangement. A few rules to be followed for Tower of Hanoi are

Only one disk can be moved among the towers at any given time.

Only the "top" disk can be removed.

No large disk can sit over a small disk.

Tower of Hanoi puzzle with n disks can be solved in minimum 2n−1 steps.

This presentation shows that a puzzle with 3 disks has taken 23 - 1 = 7 steps.

10.Dec.2023 13

PRINT min END

Tower of Hanoi

Tower of Hanoi, is a mathematical puzzle which consists of three towers (pegs) and more than one

rings.

Tower of Hanoi is one of the best example for recursive problem solving.

Pre-condition:

These rings are of different sizes and stacked upon in an ascending order, i.e. the smaller one

sits over the larger one. There are other variations of the puzzle where the number of disks increase, but

the tower count remains the same.

Post-condition:

All the disk should be moved to the last pole and placed only in ascending order as shown

below.

Rules

The mission is to move all the disks to some another tower without violating the sequence

of arrangement. A few rules to be followed for Tower of Hanoi are

Only one disk can be moved among the towers at any given time.

Only the "top" disk can be removed.

No large disk can sit over a small disk.

Tower of Hanoi puzzle with n disks can be solved in minimum 2n−1 steps.

This presentation shows that a puzzle with 3 disks has taken 23 - 1 = 7 steps.

10.Dec.2023 14

PRINT min END

Algorithm
To write an algorithm for Tower of Hanoi, first we need to learn how to solve this problem with lesser amount of disks, say → 1 or 2. We mark three towers with name,
source, aux (only to help moving the disks) and destination.
Input: one disk
If we have only one disk, then it can easily be moved from source to destination peg.
Input: two disks
If we have 2 disks −
First, we move the smaller (top) disk to aux peg.
Then, we move the larger (bottom) disk to destination peg.
And finally, we move the smaller disk from aux to destination peg.
Input: more than two disks
So now, we are in a position to design an algorithm for Tower of Hanoi with more than two disks. We divide the stack of disks in two parts. The largest disk (nth disk) is in one
part and all other (n-1) disks are in the second part.
Our ultimate aim is to move disk n from source to destination and then put all other (n1) disks onto it. We can imagine to apply the same in a recursive way for all given set of
disks.
The steps to follow are –
Step 1 − Move n-1 disks from source to aux Step 2 − Move nth disk from source to dest Step 3 − Move n-1 disks from aux to dest

A recursive algorithm for Tower of Hanoi can be driven as follows –
START
Procedure Hanoi(disk, source, dest, aux)
IF disk == 1, THEN

move disk from source to dest
ELSE
Hanoi(disk - 1, source, aux, dest) // Step 1
move disk from source to dest // Step 2
Hanoi(disk - 1, aux, dest, source) // Step 3
END IF
END Procedure STOP

10.Dec.2023 15

PRINT min END

