SNS COLLEGE OF ENGINEERING

Kurumbapalayam(Po), Coimbatore - 641107
Accredited by NAAC-UGC with 'A' Grade
Approved by AICTE, Recognized by UGC \& Affiliated to Anna University, Chennai

Department of Artificial Intelligence and Data Science
 Course Name - Computational Thinking and Python Programming

I Year / I Semester

Unit 1-Computational thinking and problem solving

Simple strategies for developing algorithm:

They are two commonly used strategies used in developing algorithm
Iteration
Recursion

Iteration

The iteration is when a loop repeatedly executes till the controlling condition becomes false
The iteration is applied to the set of instructions which we want to get repeatedly executed.
Iteration includes initialization, condition, and execution of statement within loop and update (increments and decrements) the control variable.
A sequence of statements is executed until a specified condition is true is called iterations.
-for loop
-While loop

Syntax for For:	Example: Printn natural numbers
FOR(start-value to end-value) DO statement ENDFOR	```BEGIN GETn NTIIALIZE \(\mathrm{i}=1\) FOR (\((\ll \mathrm{n}) \mathrm{DO}\) PRINTi i-i+ 1 ENDFOR END```
Syntax for While:	Example: Print n natural numbers
WHiLE (condition) D0 statement ENDWHILE	BEGIN GETn INITIALIZE i=1 WHLE($\ll=$ n) DO PRINTi i-i +1 ENDWHILE END

$$
i=i \neq 1
$$

Start
\square . \qquad

-

 \square

$$
\mathrm{N}
$$

Recursions:

- A function that calls itself is known as recursion.
- Recursion is a process by which a function calls itself repeatedly until some specified condition has beensatisfied.

Algorithm for factorial of n numbers using recursion:

Main function:

Step1: Start Step2: Get n
Step3: call factorial(n) Step4: print fact Step5: Stop

Sub function factorial(n):

Step1: if($\mathrm{n}==1$) then fact=1 return fact
Step2: else fact=n*factorial(n-1) and return fact

都
factorial(n)
PRINT fact
BIN
Sub function factorial(n$):$
$\begin{aligned} & \text { IF(} \mathrm{n}==1 \text { : THEN } \\ & \text { fact }=1 \\ & \text { RETURN fact }\end{aligned}$
ELSE $\quad \begin{aligned} & \text { RETURN fact }=n * \text { factorial }(n-1)\end{aligned}$
13-Feb-23
PRINT fact
BIN
Sub function factorial(n$):$
IF($\mathrm{n}==1$ 1) THEN
$\quad \begin{aligned} & \text { fact }=1 \\ & \quad \text { RETURN fact } \\ & \text { ELSE } \\ & \quad \text { RETURN fact }=n * \text { factorial }(n-1)\end{aligned}$
3-Feb-23

factorial(n)
PRINT fact
BIN
Sub function factorial(n$):$
$\begin{aligned} & \text { IF(} \mathrm{n}==1 \text { : THEN } \\ & \text { fact }=1 \\ & \text { RETURN fact }\end{aligned}$
ELSE $\quad \begin{aligned} & \text { RETURN fact }=n * \text { factorial }(n-1)\end{aligned}$
13-Feb-23

Main
BEGII
GET r
CALL
facto
DRIN
BIN
Sub f
IF (n=
ELSE
Main function:
BEGIN
GET n
factorial (n)

Mai
BEG
GET
CALI
fact
PRIM
BIN
Sub
IF (n $=$
ELSE
Mai
BEG
GET
CALI
fact
PRIM
BIN
Sub
IF (n $=$
ELSE

-

Lion factorial (n):
THEN
fact =1
ETURN fact

THEN
fact $=1$
RETUR fact

THEN
fact $=1$
RETUR fact

on factorial (n):
 \qquad \square - $$
\begin{aligned} & \text { PRINT fact } \\ & \text { BIN } \\ & \text { Sub function factorial(n): } \\ & \begin{array}{l} \text { IF(} n==1 \text {) THEN } \\ \text { fact }=1 \\ \text { RETURN fact } \\ \text { ELSE } \quad \text { RETURN fact }=n * \text { factorial }(n-1) \end{array} \\ & \text { 13-Feb-23 } \end{aligned}
$$ RETURN fact=n*factorial($n-1$)

 RETURN fact=n*factorial($n-1$)}ILLUSTRATIVE PROBLEMS
Guess an integer in a range

Algorithm:

Step1: Start
Step 2: Declare n, guess
Step 3: Compute guess=input Step 4: Read guess
Step 5: If guess>n, then
Print your guess is too high Else
Step6:If guess<n, then
Print your guess is too low Else
Step 7:If guess==n,then
Print Good job Else
Nope Step 6: Stop

Pseudocode:

BEGIN
COMPUTE guess=input READ guess,
IF guess>n
PRINT Guess is high ELSE
IF guess<n
PRINT Guess is low ELSE
IF guess=n PRINT Good job ELSE
Nope END都

．

\square
\square
路

$$
\begin{aligned}
& \text { 10.Dec. } 2023
\end{aligned}
$$

Find minimum in a list Algorithm：
Step 1：Start Step 2：Read n
Step 1：Start Step 2：Read n
｜l
 Step 3：Initialize $\mathrm{i}=0$
Step 4：If $\mathrm{i}<\mathrm{n}$, then goto step 4．1， 4.2 else goto step 5
Step4．1：Read a［i］
Step 4．2： $\mathrm{i}=\mathrm{i}+1$ goto step 4
Step 5：Compute min＝a［0］
Step 6：Initialize $\mathrm{i}=1$
Step 7：If i ＜n，then go to step 8 else goto step 10
Step 8：If a［i］＜min，then goto step $8.1,8.2$ else goto 8.2
Step 8．1：min＝a［i］
Step 8．2： $\mathrm{i}=\mathrm{i}+1$ goto 7
Step 9：Print min
Step 10：Stop
Pseudocode：
BEGIN
READ n
FOR i＝0 to n，then
READ a［i］
INCREMENT i
END FOR
COMPUTE min $=a[0]$
FOR $\mathrm{i}=1$ to n，then
IF a［i］＜min，then
CALCULATE min＝a［i］
INCREMENT i
ELSE INCREMENT i
END IF－ELSE
END FOR
PRINT min
END
C． 2023 Step 3：Initialize $\mathrm{i}=0$
Step 4：If $\mathrm{i}<\mathrm{n}$, then goto step 4．1， 4.2 else goto step 5
Step4．1：Read a［i］
Step 4．2： $\mathrm{i}=\mathrm{i}+1$ goto step 4
Step 5：Compute min＝a［0］
Step 6：Initialize $\mathrm{i}=1$
Step 7：If i ＜n，then go to step 8 else goto step 10
Step 8：If a［i］＜min，then goto step $8.1,8.2$ else goto 8.2
Step 8．1：min＝a［i］
Step 8．2： $\mathrm{i}=\mathrm{i}+1$ goto 7
Step 9：Print min
Step 10：Stop
Pseudocode：
BEGIN
READ n
FOR i＝0 to n，then
READ a［i］
INCREMENT i
END FOR
COMPUTE min $=a[0]$
FOR $\mathrm{i}=1$ to n，then
IF a［i］＜min，then
CALCULATE min＝a［i］
INCREMENT i
ELSE INCREMENT i
END IF－ELSE
END FOR
PRINT min
END
C． 2023

\square

\begin{abstract}

Abstract

\end{abstract}

$1,4.2$ else goto step 5
else goto step 10
step 8．1，8．2 else goto 8.2

START

 \section*{Insert a card in a list of sorted cards
 \section*{Insert a card in a list of sorted cards

 Algorithm:}

 Algorithm:}
-

Step 1: Start Step 2: Read n

Tower of Hanoi

Tower of Hanoi, is a mathematical puzzle which consists of three towers (pegs) and more than one rings.

Tower of Hanoi is one of the best example for recursive problem solving.

Pre-condition:

These rings are of different sizes and stacked upon in an ascending order, i.e. the smaller one sits over the larger one. There are other variations of the puzzle where the number of disks increase, but the tower count remains the same.

Post-condition:

All the disk should be moved to the last pole and placed only in ascending order as shown below.

Rules

The mission is to move all the disks to some another tower without violating the sequence of arrangement. A few rules to be followed for Tower of Hanoi are
Only one disk can be moved among the towers at any given time.
Only the "top" disk can be removed.
No large disk can sit over a small disk.
Tower of Hanoi puzzle with n disks can be solved in minimum $\mathbf{2}^{\mathbf{n}} \mathbf{- 1}$ steps.
This presentation shows that a puzzle with 3 disks has taken $\mathbf{2}^{\mathbf{3}} \mathbf{- 1 = 7}$ steps.

Tower of Hanoi

Tower of Hanoi, is a mathematical puzzle which consists of three towers (pegs) and more than one rings.

Tower of Hanoi is one of the best example for recursive problem solving.

Pre-condition:

These rings are of different sizes and stacked upon in an ascending order, i.e. the smaller one sits over the larger one. There are other variations of the puzzle where the number of disks increase, but the tower count remains the same.

Post-condition:

All the disk should be moved to the last pole and placed only in ascending order as shown below.

Rules

The mission is to move all the disks to some another tower without violating the sequence of arrangement. A few rules to be followed for Tower of Hanoi are
Only one disk can be moved among the towers at any given time.
Only the "top" disk can be removed.
No large disk can sit over a small disk.
Tower of Hanoi puzzle with n disks can be solved in minimum $\mathbf{2}^{\mathbf{n}} \mathbf{- 1}$ steps.
This presentation shows that a puzzle with 3 disks has taken $\mathbf{2}^{\mathbf{3}} \mathbf{- 1 = 7}$ steps.

Algorithm

To write an algorithm for Tower of Hanoi, first we need to learn how to solve this problem with lesser amount of disks, say $\rightarrow 1$ or 2 . We mark three towers with nam
source, aux (only to help moving the disks) and destination.
Input: one disk
If we have only one disk, then it can easily be moved from source to destination peg.

Input: two disks

If we have 2 disks -
First, we move the smaller (top) disk to aux peg.
Then, we move the larger (bottom) disk to destination peg.
And finally, we move the smaller disk from aux to destination peg.

Input: more than two disks

 part and all other ($n-1$) disks are in the second part.
 disks.
The steps to follow are -
Step 1 - Move n-1 disks from source to aux Step 2 - Move nth disk from source to dest Step 3 - Move n-1 disks from aux to dest

A recursive algorithm for Tower of Hanoi can be driven as follows -
START
Procedure Hanoi(disk, source, dest, aux)
IF disk ==1, THEN
move disk from source to dest
ELSE
Hanoi(disk - 1, source, aux, dest) // Step 1 move disk from source to dest // Step 2
Hanoi(disk-1, aux, dest, source) // Step 3
END IF
END Procedure STOP

