SNS College of Engineering Coimbatore - 641107

Multiplication of large integers and strassen's matrix

Multiplication of large integers

$>$ Over 100 Decimal digits long required manipulation of Integers
$>$ Such Integers are too long to fit in single word of modern computers, they required special treatment
>So, we are using classic method Pen and Pencil algorithm for multiplying to n-digit integers
$>n$-digit - $1^{\text {st }}$ number $* n$-digit-2 ${ }^{\text {nd }}$ number $=n^{2}$ digit multiplication

Formula

- Pair of 2 digit integers

$$
\begin{aligned}
& a=a 1 a 0 \\
& b=b 1 b 0
\end{aligned}
$$

Their product is c .

$$
\begin{aligned}
& c=a * b=c 210^{2}+c 110^{1}+c 0 \text {, where } \\
& c 2=a 1 * b 1->\text { Product of } 1^{\text {st }} \text { digit } \\
& c 0=a 0 * b 0->\text { Product of } 2^{\text {nd }} \text { digit } \\
& c 1=(a 1+a 0)^{*}(b 1+b 0)-(c 2+c 0)->\text { product of sum } \\
& \text { of a's digit and sum of b's digit minus sum of c2 and } c 0
\end{aligned}
$$

Formula

$>$ Apply Divide and Conquer technique
> First half of a's digit is a1 and second half by aO . Same as this for b, b1 and b0
$>$ Using $\mathrm{c}=\mathrm{a} * \mathrm{~b}=\mathrm{C} 210^{2}+\mathrm{c} 110^{1}+\mathrm{co}$ this formula,

$$
c=a * b=\left(a 110^{n / 2}+a 0\right) *\left(b 110^{n / 2}+b 0\right)
$$

$\Rightarrow\left(a 1^{*} b 1\right) 10^{n}+\left(a 1^{*} b 0+a 1^{*} b 1\right) 10^{n / 2}+\left(a O^{*} b 0\right)$
$\Rightarrow \mathrm{C} 210^{2}+\mathrm{c} 10^{1}+\mathrm{c} 0$

Analysis of Multiplication of large Integers
 $>T(n)=3 T(n / 2)$

Therefore, time complexity for all the cases, $3 \log _{2} n$
trassen's algorithm for two 2×2 matrices :

$$
\begin{aligned}
& c_{00} c_{01}=\begin{array}{llll}
a_{00} & a_{01} & * & b_{00} b_{01} \\
c_{10} & c_{11} & a_{10} a_{11} & b_{10} b_{11}
\end{array} \\
& \\
&=\begin{array}{ll}
m_{1}+m_{4}-m_{5}+m_{7} & m_{3}+m_{5} \\
m_{2}+m_{4} & m_{1}+m_{3}-m_{2}+m_{6}
\end{array}
\end{aligned}
$$

$$
m_{1}=\left(a_{00}+a_{11}\right) *\left(b_{00}+b_{11}\right)
$$

$$
m_{2}=\left(a_{10}+a_{11}\right) * b_{00}
$$

$$
m_{3}=a_{00} *\left(b_{01}-b_{11}\right)
$$

$$
m_{4}=a_{11} *\left(b_{10}-b_{00}\right)
$$

$$
m_{5}=\left(a_{00}+a_{01}\right) * b_{11}
$$

$$
m_{6}=\left(a_{10}-a_{00}\right) *\left(b_{00}+b_{01}\right)
$$

$$
m_{7}=\left(a_{01}-a_{11}\right) *\left(b_{10}+b_{11}\right)
$$

