

Multiplication of large integers and strassen's matrix

Multiplication of large integers

- Over 100 Decimal digits long required manipulation of Integers
- Such Integers are too long to fit in single word of modern computers, they required special treatment
- So, we are using classic method Pen and Pencil algorithm for multiplying to n-digit integers
- n-digit -1st number * n-digit-2nd number = n² digit multiplication

Formula

- Pair of 2 digit integers
 - a = a1 a0
 - b = b1 b0

Their product is c.

c0 = a0 * b0 -> Product of 2nd digit

c1 = (a1 + a0) * (b1 + b0) - (c2 + c0) -> product of sum of a's digit and sum of b's digit minus sum of c2 and c0

Formula

- Apply Divide and Conquer technique
- First half of a's digit is a1 and second half by a0. Same as this for b, b1 and b0
- \blacktriangleright Using c= a * b = C2 10²+c1 10¹+c0 this formula,
 - $c = a*b = (a1 \ 10^{n/2}+a0) * (b1 \ 10^{n/2}+b0)$
- \Rightarrow (a1*b1)10ⁿ + (a1*b0 + a1*b1) 10^{n/2} + (a0*b0) \Rightarrow C2 10²+c1 10¹ +c0

www.snsgroups.com in the image

≻T(n) = 3 T(n/2)

Therefore, time complexity for all the cases, $3\log_2 n$

4/8/2022

ALGORITHMS

$$= \begin{array}{ccc} m_1 + m_4 - m_5 + m_7 & m_3 + m_5 \\ m_2 + m_4 & m_1 + m_3 - m_2 + m_6 \end{array}$$