
Divide & Conquer

SNS College of Engineering

Coimbatore - 641107

4/8/2022 1
CS6402- DESIGN AND ANALYSIS OF ALGORITHMS

T.R.Lekhaa/AP/IT

Introduction

The most-well known algorithm design strategy:

1. Divide instance of problem into two or more
smaller instances

2. Solve smaller instances recursively

3. Obtain solution to original (larger) instance by
combining these solutions

4/8/2022 2
CS6402- DESIGN AND ANALYSIS OF ALGORITHMS

T.R.Lekhaa/AP/IT

4/8/2022 3
CS6402- DESIGN AND ANALYSIS OF

ALGORITHMS T.R.Lekhaa/AP/IT

subproblem 2
of size n/2

subproblem 1
of size n/2

a solution to
subproblem 1

a solution to
the original problem

a solution to
subproblem 2

a problem of size n
(instance)

Examples

• Sorting: merge sort and quick sort

• Binary search

• Multiplication of large integers

• Matrix multiplication: Strassen’s algorithm

• Closest-pair and convex-hull algorithms

4/8/2022 4
CS6402- DESIGN AND ANALYSIS OF

ALGORITHMS T.R.Lekhaa/AP/IT

General Divide-and-Conquer Recurrence

T(n) = aT(n/b) + f (n) where f(n) (nd), d 0

Master Theorem: If a < bd, T(n) (nd)

 If a = bd, T(n) (nd log n)

 If a > bd, T(n) (nlog b a
)

Note: The same results hold with O instead of .

Examples: T(n) = 4T(n/2) + n T(n) ?

 T(n) = 4T(n/2) + n2 T(n) ?

 T(n) = 4T(n/2) + n3 T(n) ?

(n^2)

(n^2log n)

(n^3)

4/8/2022 5
CS6402- DESIGN AND ANALYSIS OF

ALGORITHMS T.R.Lekhaa/AP/IT

Algorithm

Algorithm DC(p)
{
If p is too small then
return solution of p
{
divide (p) & obtain p1,p2,…pn
where n>=1
Apply DC to each sub problem
return combine(DC(p1), DC(p2),…DC(pn));
}
}

4/8/2022
CS6402- DESIGN AND ANALYSIS OF

ALGORITHMS T.R.Lekhaa/AP/IT
6

Break

• Alphabet Exercise

 Allocate a number of letters of the alphabet to
each group and then give them 5 minutes to find
as many objects as possible they can point to in
the room that begins with one of their allocated
letters. No real rules so you find some people can
get very creative, bringing items in from outside
the room, naming parts of the body (e.g.
pupil/cornea..), emptying their handbags to find
items, etc. Creates great energy and fun.

4/8/2022

CS6402- DESIGN AND ANALYSIS OF
ALGORITHMS T.R.Lekhaa/AP/IT

7

Mergesort
• Split array A[0..n-1] into about equal halves and

make copies of each half in arrays B and C

• Sort arrays B and C recursively

• Merge sorted arrays B and C into array A as
follows:
– Repeat the following until no elements remain in one of the

arrays:

• compare the first elements in the remaining unprocessed
portions of the arrays

• copy the smaller of the two into A, while incrementing the
index indicating the unprocessed portion of that array

– Once all elements in one of the arrays are processed, copy the
remaining unprocessed elements from the other array into A.

 4/8/2022 8
CS6402- DESIGN AND ANALYSIS OF

ALGORITHMS T.R.Lekhaa/AP/IT

Algorithm of Merge sort

4/8/2022 9
CS6402- DESIGN AND ANALYSIS OF

ALGORITHMS T.R.Lekhaa/AP/IT

• \\ Problem Description: Merge 2 sorted array into one sorted array.

• \\ Input: Array A(0---n-1,low,high)

• \\ Output: Sorted array of element

If(low<high)then

{

Mid (low+high)/2

Merge sort(A, low, mid)

Merge sort(A,Mid+1,high)

Combine(A,low,mid,high)

}

Algorithm combine(A[0—n-1], low, mid, high)

{

 Klow;

ilow;

Jmid+1;

Algorithm of Merge

4/8/2022 10
CS6402- DESIGN AND ANALYSIS OF

ALGORITHMS T.R.Lekhaa/AP/IT

While(i<=mid & j<= high) do

{

If(A[i]<=A[j]) then

{

Temp[k]A[i]

ii+1

Kk+1

}

else

{

Temp[k]A[j]

Jj+1

Kk+1

}

}

Mergesort Example

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

3 8 2 9 1 7 4 5

2 3 8 9 1 4 5 7

1 2 3 4 5 7 8 9

The non-recursive version
of Merge sort starts from
merging single elements
into sorted pairs.

4/8/2022

Analysis of Mergesort

• All cases have same efficiency: Θ(n log n)

• Number of comparisons in the worst case is close to
theoretical minimum for comparison-based sorting:
 log2 n! ≈ n log2 n - 1.44n

• Space requirement: Θ(n) (not in-place)

• Can be implemented without recursion (bottom-up)

T(n) = 2T(n/2) + Θ(n), T(1) = 0

4/8/2022 12
CS6402- DESIGN AND ANALYSIS OF

ALGORITHMS T.R.Lekhaa/AP/IT

5 3 8 2 9 1 7 4

4/8/2022
CS6402- DESIGN AND ANALYSIS OF

ALGORITHMS T.R.Lekhaa/AP/IT
13

