SNS College of Engineering
 Coimbatore - 641107

Asymptotic notations

AP/IT

- O notation: asymptotic "less than": $\mathrm{f}(\mathrm{n})$ " \leq " $\mathrm{g}(\mathrm{n})$
- Ω notation: asymptotic "greater than": $f(n)$ " \geq " $g(n)$
- Θ notation: asymptotic "equality": $f(\mathrm{n})$ " $=$ " $g(\mathrm{n})$

Big-O

$f(n)=O(g(n))$: there exist positive constants c and n_{0} such that $0 \leq f(n) \leq c g(n)$ for all $n \geq n_{0}$

If $f(n)=\mathrm{O}\left(n^{2}\right)$, then:
$\bullet f(n)$ can be larger than n^{2} sometimes, but...
-I can choose some constant c and some value n_{0} such that for every value of n larger than $n_{0}: f(n)<c n^{2}$
-That is, for values larger than $n_{0}, f(n)$ is never more than a constant multiplier greater than n^{2}

Visualization of $O(g(n))$

Big Omega - Notation

$\Omega()=$ A lower bound
$f(n)=\Omega(g(n))$: there exist positive constants c and n_{0} such that

$$
0 \leq f(n) \geq c g(n) \text { for all } n \geq n_{0}
$$

$n^{2}=\Omega(n)$

Let $c=1, n_{0}=2$

For all $n \geq 2, n^{2}>1 \times n$

Visualization of $\Omega(g(n))$

Θ-notation

$\operatorname{Big}-O$ is not a tight upper bound.

In other words $n=O\left(n^{2}\right)$
Θ provides a tight bound
$f(n)=\Theta(g(n)):$ there exist positive constants c_{1}, c_{2}, and n_{0} such that

$$
0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n) \text { for all } n \geq n_{0}
$$

Visualization of $\Theta(g(n))$

Visualization of Asymptotic Growth

Analogy to Arithmetic Operators

$$
\begin{aligned}
f(n)=O(g(n)) & \approx a \leq b \\
f(n)=\Omega(g(n)) & \approx a \geq b \\
f(n)=\Theta(g(n)) & \approx a=b
\end{aligned}
$$

BREAK

Answer:
231

