

SNS College of Engineering Coimbatore - 641107

Asymptotic notations

AP/IT

- O notation: asymptotic "less than": f(n) "≤" g(n)
- Ω notation: asymptotic "greater than": f(n) " \geq " g(n)
- Θ notation: asymptotic "equality": f(n) "=" g(n)

Big-O

f(n) = O(g(n)): there exist positive constants *c* and n_0 such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$

If $f(n) = O(n^2)$, then:

•f(n) can be larger than n^2 sometimes, **but**...

•I can choose some constant *c* and some value n_0 such that for every value of *n* larger than $n_0 : f(n) < cn^2$

•That is, for values larger than n_0 , f(n) is never more than a constant multiplier greater than n^2

Big Omega – Notation

 $\Omega() = A$ lower bound

 $f(n) = \Omega(g(n))$: there exist positive constants *c* and n_0 such that $0 \le f(n) \ge cg(n)$ for all $n \ge n_0$

$$n^2 = \Omega(n)$$

Let c = 1, $n_0 = 2$

For all $n \ge 2$, $n^2 > 1 \times n$

Θ -notation

Big-O is not a tight upper bound.

In other words $n = O(n^2)$

 $\boldsymbol{\Theta}$ provides a tight bound

 $f(n) = \Theta(g(n))$: there exist positive constants c_1, c_2 , and n_0 such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$

Analogy to Arithmetic Operators

$$f(n) = O(g(n)) \approx a \le b$$

$$f(n) = \Omega(g(n)) \approx a \ge b$$

$$f(n) = \Theta(g(n)) \approx a = b$$

BREAK

Answer:

2 3 1