

# SNS College of Engineering Coimbatore - 641107



## Asymptotic notations

AP/IT

- O notation: asymptotic "less than": f(n) "≤" g(n)
- $\Omega$  notation: asymptotic "greater than": f(n) " $\geq$ " g(n)
- $\Theta$  notation: asymptotic "equality": f(n) "=" g(n)

# Big-O

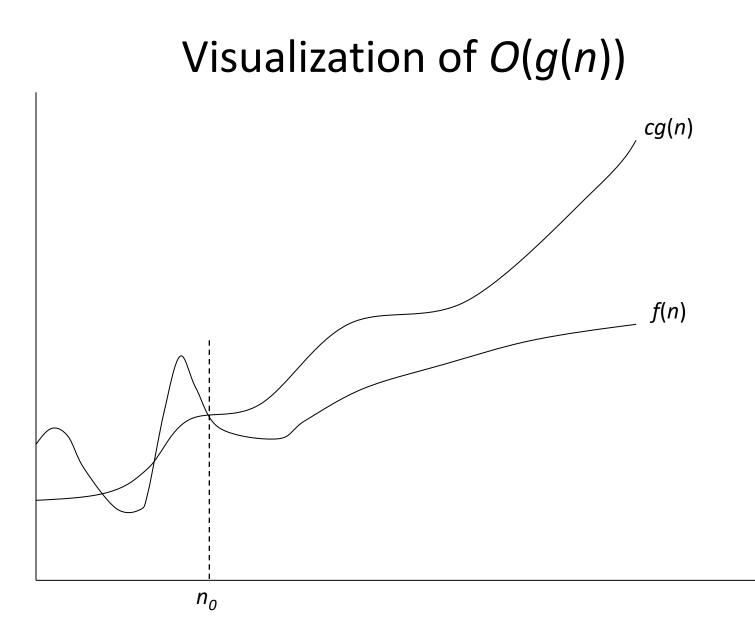
f(n) = O(g(n)): there exist positive constants *c* and  $n_0$  such that  $0 \le f(n) \le cg(n)$  for all  $n \ge n_0$ 

If  $f(n) = O(n^2)$ , then:

•f(n) can be larger than  $n^2$  sometimes, **but**...

•I can choose some constant *c* and some value  $n_0$  such that for every value of *n* larger than  $n_0 : f(n) < cn^2$ 

•That is, for values larger than  $n_0$ , f(n) is never more than a constant multiplier greater than  $n^2$ 



## Big Omega – Notation

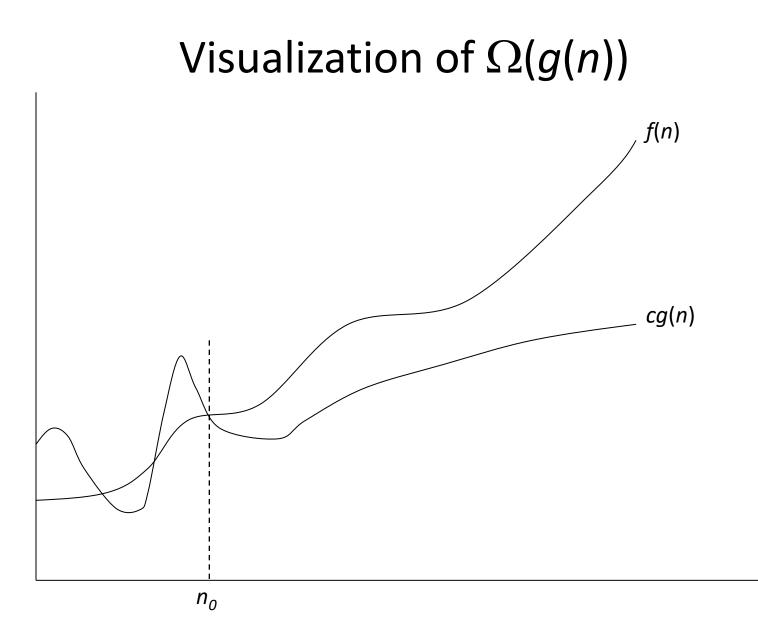
 $\Omega() = A$  lower bound

 $f(n) = \Omega(g(n))$ : there exist positive constants *c* and  $n_0$  such that  $0 \le f(n) \ge cg(n)$  for all  $n \ge n_0$ 

$$n^2 = \Omega(n)$$

Let c = 1,  $n_0 = 2$ 

For all  $n \ge 2$ ,  $n^2 > 1 \times n$ 



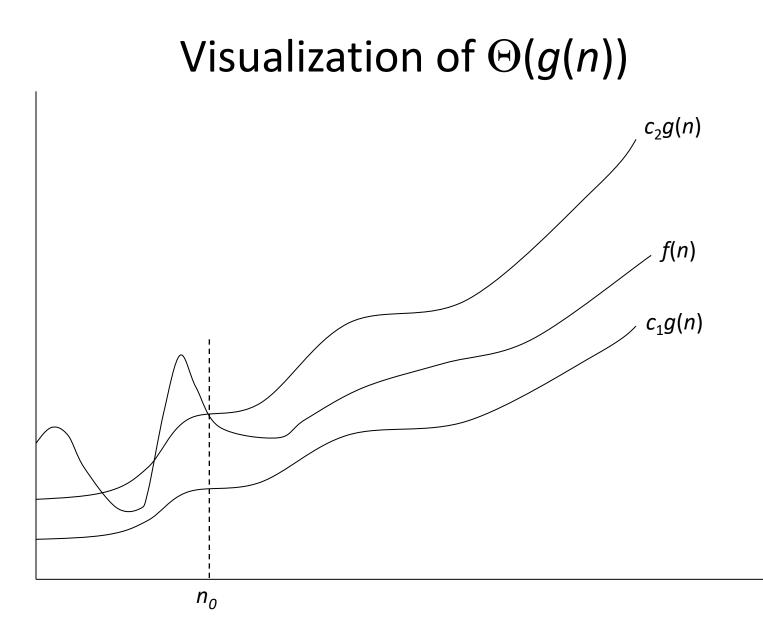
### $\Theta$ -notation

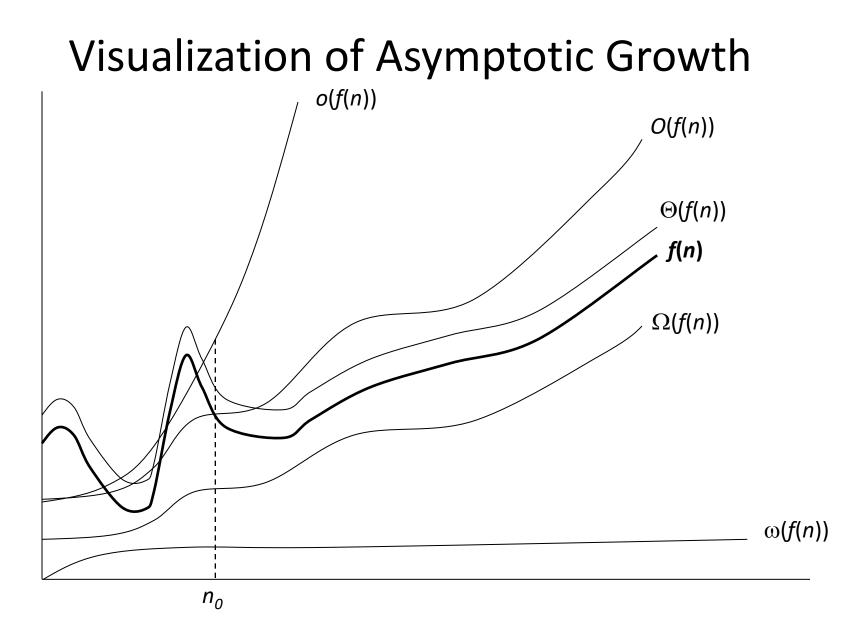
Big-O is not a tight upper bound.

In other words  $n = O(n^2)$ 

 $\boldsymbol{\Theta}$  provides a tight bound

 $f(n) = \Theta(g(n))$ : there exist positive constants  $c_1, c_2$ , and  $n_0$  such that  $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$  for all  $n \ge n_0$ 





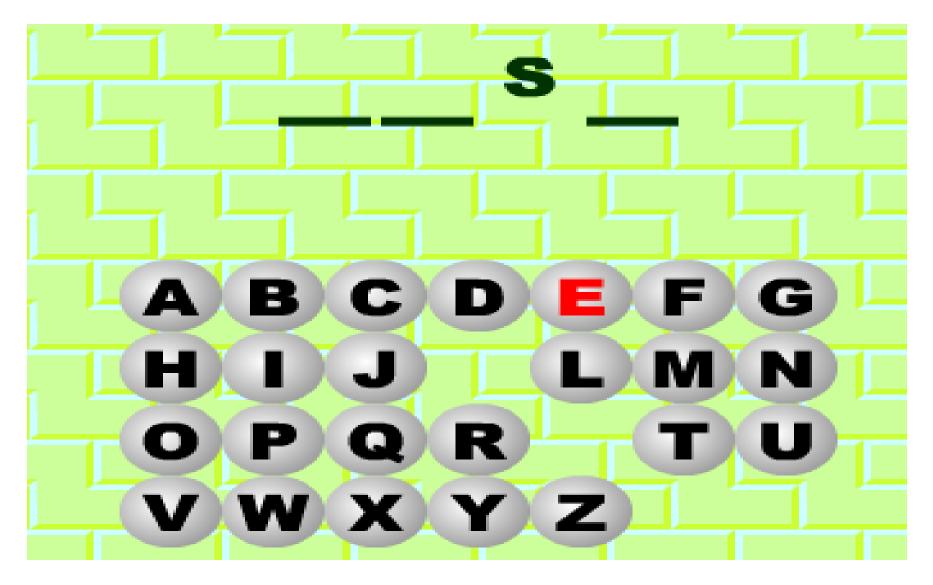
#### Analogy to Arithmetic Operators

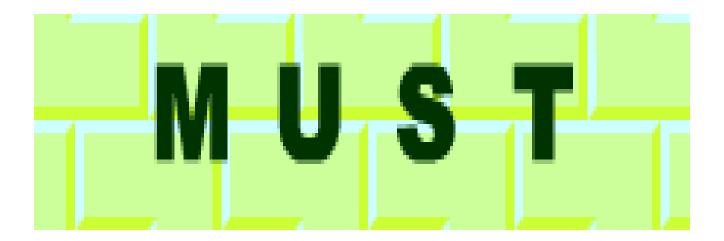
$$f(n) = O(g(n)) \approx a \le b$$
  

$$f(n) = \Omega(g(n)) \approx a \ge b$$
  

$$f(n) = \Theta(g(n)) \approx a = b$$

#### BREAK





#### Answer:

2 3 1