

AN AUTONOMOUS INSTITUTION

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

Topic: 1.3 - PROBLEMS ON EIGEN VALUES AND EIGEN VECTORS

Find the Eigen value and Eigen Vectors of (2 1-6) 80lu: Het $A = \begin{pmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \end{pmatrix}$ step:1: to find the char. egr. The chair equ. of A is $\lambda^3 - S_1 \lambda^2 + S_2 \lambda - S_3 = 0$ where S. = Sum of the main diagonali elements = -2+1+0 82 - 8um of the minors of the main diagonal elements. $= \begin{vmatrix} 1 & -b \\ -2 & 0 \end{vmatrix} + \begin{vmatrix} -2 & -3 \\ -1 & 0 \end{vmatrix} + \begin{vmatrix} -2 & 2 \\ 2 & 1 \end{vmatrix}$ = (0-12)4 (0-3)+ (-2-4) = -12-3-6 =-21 8 = 1A1 -2(0-12)-2(0-6)-3(-4+1) = 24+12+9=45 e Char. Egu. 15 23 + 2-21 2-45 = 0

AN AUTONOMOUS INSTITUTION

8tep >: to solve the char. equ.
$$N^3 + N^2 - 210 - 45 = 0$$
 ... D

The $N=1$ then $D=1+1-21-45 \neq 0$

The $D=1$ then $D=1+1-21-45 \neq 0$

8 Eep: 3 to find the Eigenvectors.

Solve
$$(A-\lambda_1) \times = 0$$

$$\begin{bmatrix} -2-\lambda & 2 & -3 \\ 2 & 1-\lambda & -6 \\ -1 & -2 & 0-\lambda \end{bmatrix} \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

AN AUTONOMOUS INSTITUTION

Case(i):
$$3 + 3 = 3$$
 then equ. (a) becomes.

$$\begin{pmatrix}
1 & 2 & -3 & | & x_1 \\
2 & 3 & -6 & | & x_2 & | & 0 \\
-1 & -1 & 3 & | & x_3 & | & 0
\end{pmatrix}$$

$$x_1 + 2x_2 - 3x_3 = 0 \qquad (a)$$

$$2x_1 + 3x_2 - 6x_3 = 0 \qquad (b)$$
There 0 , 0 be 0 are same equ.

We consider
$$x_1+2\gamma_2-3x_3=0$$

Put $x_1=0$ We get $2\gamma_2=3x_3$

$$\frac{x_2}{3}=\frac{x_3}{2}$$

. Eigen veron is $x_1=\begin{bmatrix}0\\3\end{bmatrix}$

Put $x_2=0$, We get $x_1-3x_3=0$
 $x_1=3x_3=\frac{x_3}{3}=\frac{x_3}{3}=\frac{x_3}{3}$

. The Eigenverton $x_2=\begin{bmatrix}3\\0\end{bmatrix}$

Care: 2:

The A=5 then Equ. @ becomes.

AN AUTONOMOUS INSTITUTION

AN AUTONOMOUS INSTITUTION

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

Find the Figenvalues and Eigenvectors of

$$A = \begin{pmatrix} 6 & -6 \\ 14 & -13 \\ 7 & -6 \end{pmatrix}$$

Step1: to find the Chan. equ.
The Chan: equ. of A is $A^3 - S, \lambda^2 + S_3 \lambda - S_3 = 0$

= (-52+60)+(24 -35) + (-78+84)

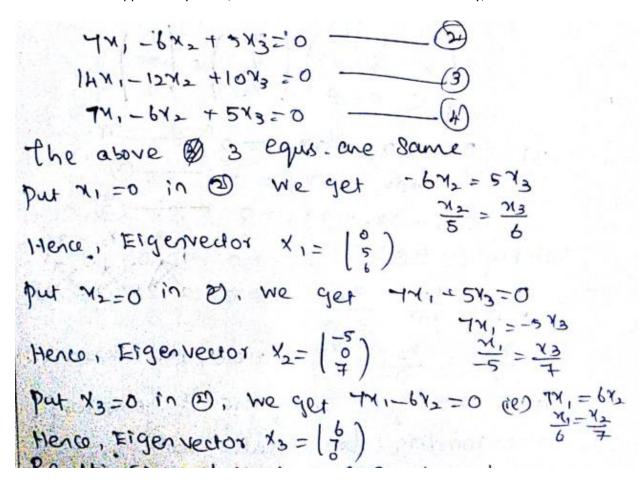
$$28-11+6=3$$

 $83=1A1=-1$

AN AUTONOMOUS INSTITUTION

(
$$3+1$$
) ($3+23+1$) = 0
($3+1$) ($3+1$) ($3+1$) ($3+1$) = 0
Hence the Eigenvalues one -1,-1,-1
8tep: 3 To find the Eigenvector,
801 ve ($A-31$) $X=0$
($6-3-6$ 5 X_1) $X=0$
($14-13-3$ 16 X_2) = (0) X_3
When $3=-1$, X_1 becomes.
(X_2) = (0)
When $X_1=-1$, X_2) = (0)
 X_1 0 becomes.

AN AUTONOMOUS INSTITUTION



AN AUTONOMOUS INSTITUTION

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

Find the Eigenvalues and Eigenvector of (101) Let A = (1 0 1) 8 tep: 1: To find the characteristic equ The Chan: egu. of A 15 23-5, 245, 2-53=0 Where Si = 0+0+0 = 0 S== 10 1)+ 10 1)+ 10 1) = (0-17+ (0-17+ (0-17) S3 = 1A1 = 0 (0-1)-1 (0-1)+1(1-0) = 0+1+1=2 .. The char. equ. 15 $\lambda^3 - 0\lambda^2 - 3\lambda - 2 = 0$ 3 tep: 2: To find Eigen Value. Solvier 23_37-2=0. SH 7=1, 0 =) 1-3-2 = 0 If $\lambda = -1$, 0 = -1+3-2 = 0-. y=-1 & a soot (ie) (x=)-2)=0

AN AUTONOMOUS INSTITUTION

Hence the Eigenvalues are
$$-1,-1,2$$
.

Step 3: To find Eigenvalues are $-1,-1,2$.

8 Note $(A-N)X = 0$ (ie) $\begin{bmatrix} 1 & -\lambda & 1 & 1 & 1 \\ 1 & -\lambda & 1 & 1 & 1 \\ 1 & -\lambda & 1 & 1 & 1 \end{bmatrix}$

Carein $\lambda = \frac{2}{2}$. To become $\lambda_1 = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 1 & -\lambda & 1 & 1 \\ 1 & 1 & -\lambda & 1 & 1 \end{bmatrix}$
 $-2x_1 + x_2 + x_3 = 0$
 $-2x_1 + x_2 + x_3 + x_3 = 0$
 $-2x_1 + x_2 + x_3 + x_3 + x_3 = 0$
 $-2x_1 + x_2 + x_3 +$

AN AUTONOMOUS INSTITUTION

Here
$$\mathfrak{G}$$
, \mathfrak{G} both are same egym.

There \mathfrak{G} , \mathfrak{G} both are same egym.

That $\chi_1 = 0$ we get $\chi_2 = -\chi_3$
 $\chi_2 = -\chi_3$
 $\chi_3 = -\chi_3$
 $\chi_4 = -\chi_3$
 $\chi_5 = -\chi_3$
 $\chi_5 = -\chi_3$

Let
$$v_3 = \begin{bmatrix} m \\ m \end{bmatrix}$$
 as x_3 is orthogonal to x_1 and v_2 .

Since the given nature is Symmetric.

$$\begin{bmatrix} 1 & 1 & 1 \\ m \end{bmatrix} = 0 \quad (01) \quad l_1 + m + n = 0 \quad -\frac{1}{1} = 0$$

$$\begin{bmatrix} 0 & 1 - 1 \\ m \end{bmatrix} = 0 \quad (01) \quad 0 \quad l_2 + m + n = 0 \quad -\frac{1}{1} = 0$$

$$\begin{bmatrix} 0 & 1 - 1 \\ m \end{bmatrix} = 0 \quad (01) \quad 0 \quad l_2 + m + n = 0 \quad -\frac{1}{1} = 0$$

$$\begin{bmatrix} 0 & 1 - 1 \\ m \end{bmatrix} = 0 \quad (01) \quad 0 \quad l_2 + m + n = 0 \quad -\frac{1}{1} = 0$$

$$\begin{bmatrix} 0 & 1 - 1 \\ m \end{bmatrix} = 0 \quad (01) \quad 0 \quad l_2 + m + n = 0 \quad -\frac{1}{1} = 0$$

$$\begin{bmatrix} 0 & 1 - 1 \\ m \end{bmatrix} = 0 \quad (01) \quad 0 \quad l_2 + m + n = 0 \quad -\frac{1}{1} = 0$$

$$\begin{bmatrix} 0 & 1 - 1 \\ m \end{bmatrix} = 0 \quad (01) \quad 0 \quad l_2 + m + n = 0 \quad -\frac{1}{1} = 0$$

$$\begin{bmatrix} 0 & 1 - 1 \\ m \end{bmatrix} = 0 \quad (01) \quad 0 \quad l_2 + m + n = 0 \quad -\frac{1}{1} = 0$$

$$\begin{bmatrix} 0 & 1 - 1 \\ m \end{bmatrix} = 0 \quad (01) \quad 0 \quad l_2 + m + n = 0 \quad -\frac{1}{1} = 0$$

$$\begin{bmatrix} 0 & 1 - 1 \\ m \end{bmatrix} = 0 \quad (01) \quad 0 \quad l_2 + m + n = 0 \quad -\frac{1}{1} = 0$$

$$\begin{bmatrix} 0 & 1 - 1 \\ m \end{bmatrix} = 0 \quad (01) \quad 0 \quad l_2 + m + n = 0 \quad -\frac{1}{1} = 0$$

$$\begin{bmatrix} 0 & 1 - 1 \\ m \end{bmatrix} = 0 \quad (01) \quad 0 \quad l_2 + m + n = 0 \quad -\frac{1}{1} = 0$$

$$\begin{bmatrix} 0 & 1 - 1 \\ m \end{bmatrix} = 0 \quad (01) \quad 0 \quad l_2 + m + n = 0 \quad -\frac{1}{1} = 0$$

$$\begin{bmatrix} 0 & 1 - 1 \\ m \end{bmatrix} = 0 \quad (01) \quad 0 \quad l_2 + m + n = 0 \quad -\frac{1}{1} = 0$$

$$\begin{bmatrix} 0 & 1 - 1 \\ m \end{bmatrix} = 0 \quad (01) \quad 0 \quad l_3 + m + n = 0 \quad -\frac{1}{1} = 0$$

$$\begin{bmatrix} 0 & 1 - 1 \\ m \end{bmatrix} = 0 \quad (01) \quad 0 \quad l_3 + m + n = 0 \quad -\frac{1}{1} = 0$$

$$\begin{bmatrix} 0 & 1 - 1 \\ m \end{bmatrix} = 0 \quad (01) \quad 0 \quad l_3 + m + n = 0 \quad -\frac{1}{1} = 0$$

$$\begin{bmatrix} 0 & 1 - 1 \\ m \end{bmatrix} = 0 \quad (01) \quad 0 \quad l_3 + m + n = 0 \quad -\frac{1}{1} = 0$$

$$\begin{bmatrix} 0 & 1 - 1 \\ m \end{bmatrix} = 0 \quad (01) \quad 0 \quad l_3 + m + n = 0 \quad -\frac{1}{1} = 0$$

$$\begin{bmatrix} 0 & 1 - 1 \\ m \end{bmatrix} = 0 \quad (01) \quad 0 \quad l_3 + m + n = 0 \quad -\frac{1}{1} = 0$$

$$\begin{bmatrix} 0 & 1 - 1 \\ m \end{bmatrix} = 0 \quad (01) \quad 0 \quad l_3 + m + n = 0 \quad -\frac{1}{1} = 0$$

$$\begin{bmatrix} 0 & 1 - 1 \\ m \end{bmatrix} = 0 \quad (01) \quad 0 \quad l_3 + m + n = 0 \quad -\frac{1}{1} = 0$$

$$\begin{bmatrix} 0 & 1 - 1 \\ m \end{bmatrix} = 0 \quad 0 \quad l_3 + m + n = 0 \quad -\frac{1}{1} = 0$$

$$\begin{bmatrix} 0 & 1 - 1 \\ m \end{bmatrix} = 0 \quad 0 \quad l_3 + m + n = 0 \quad -\frac{1}{1} = 0$$

$$\begin{bmatrix} 0 & 1 - 1 \\ m \end{bmatrix} = 0 \quad l_3 + m + n = 0 \quad l_3 + m + n = 0 \quad l_3 + m + n = 0$$

$$\begin{bmatrix} 0 & 1 - 1 \\ m \end{bmatrix} = 0 \quad l_3 + m + n = 0 \quad l_3 + m$$