SNS COLLEGE OF ENGINEERING Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND DESIGN

19IT103 – COMPUTATIONAL THINKING AND PYTHON PROGRAMMING

*A readable, dynamic, pleasant, flexible, fast and powerful language

Recap:

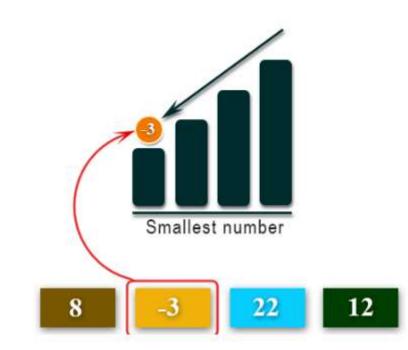
- Simple strategies for developing algorithms:
 - Iteration
 - Recursion
- Iteration: A sequence that is executed repeatedly so long as a certain condition holds. A sequence of statements is executed until a specified condition is true is called iterations.
 - for loop
 - While loop

Recap:

- Simple strategies for developing algorithms:
 - Iteration
 - Recursion

- Recursion: A function that calls itself is known as recursion.
- Recursion is a process by which a function calls itself repeatedly until some

specified condition has been satisfied.


1.8 Illustrative problems:

- Find a minimum in a list
- insert a card in a list of sorted cards

•

• To find the minimum element in the given list of elements.

Minimum Number In a List

Problem Statement:

• The problem is to find the minimum element in the given list of elements. Finding minimum in a list of elements can be achieved in different ways.

Different ways to find minimum element in a list:

- One way is to sort the list of elements in ascending order and get the first element as minimum.
- Another method is to compare each element with other.
 - As an initial step, <u>first element of the list is considered as</u> minimum element.
 - And in each iteration, each element in the list is compared with the minimum.
 - If the element in the list is less than the minimum then swap both elements else compare with the next element in the list.
 - These steps are continued until the end of the list and finally print the minimum.

Find minimum of two numbers:

```
#find minimum of two numbers
# a and b are parameters'
def find_min(a, b):
    if a < b:
        return a
    return b
print("Enter two values :")
a = int(input())
b = int(input())
print("Minimum number is ", find_min(a, b))
```

Find minimum of two numbers:

mair	n.py [] (S	Run Shell
1 • 2 • 3	def find_min(a,b): if(a <b): return a</b): 	Enter two values: 5 88
4 5	return b	Minimum number is 5 >
6	<pre>print("Enter two values:")</pre>	
7	a=int <mark>(</mark> input())	
8	b=int(input())	
9	<pre>print("Minimum number is ",find_min(a,b))</pre>	
10		

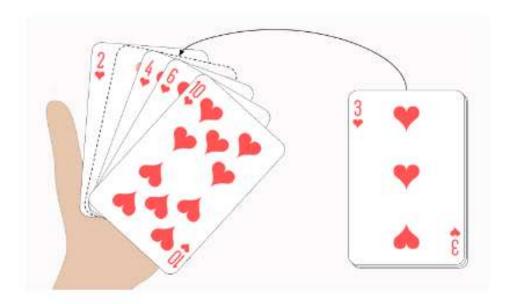
Find minimum of three numbers:

```
#find minimum of three numbers
def find min(a, b):
    if a < b:
        return a
    return b
# a, b and c are parameters
def min_of_three(a, b, c):
    minVal = find min(a, b)
    if c < minVal:</pre>
        return c
    return minVal
print("Enter three numbers: ")
a = int(input())
b = int(input())
c = int(input())
print("Minimum number is ", min_of_three(a, b, c))
```

Find minimum of three numbers:

main.py	CC C Run	Shell
2 • 1 3 4 r 5 6 • def m 7 m 8 • 1 9	<pre>ind_min(a,b): f(a<b): a="" b="" c="" c<minval:="" eturn="" f="" in_of_three(a,b,c):="" inval="find_min(a,b)" minval<="" pre="" return=""></b):></pre>	Enter three values: 77 3 56 Minimum number is 3 >
12 print 13 a=int 14 b=int 15 c=int	<pre>("Enter three values:") (input()) (input()) (input()) ("Minimum number is ",min_of_three(a,b,c))</pre>	

Find minimum number in a list:


```
# find minimum of a list
def min of list(aList):
    if not alist:
        return None
    minVal = aList[0]
    for number in aList[1:]:
        if number < minVal:
            minVal = number
    return minVal
myList = []
limit = int(input("Enter the limit: "))
print("Enter the elements:\n")
for i in range(limit):
    element = int(input())
    myList.append(element)
```

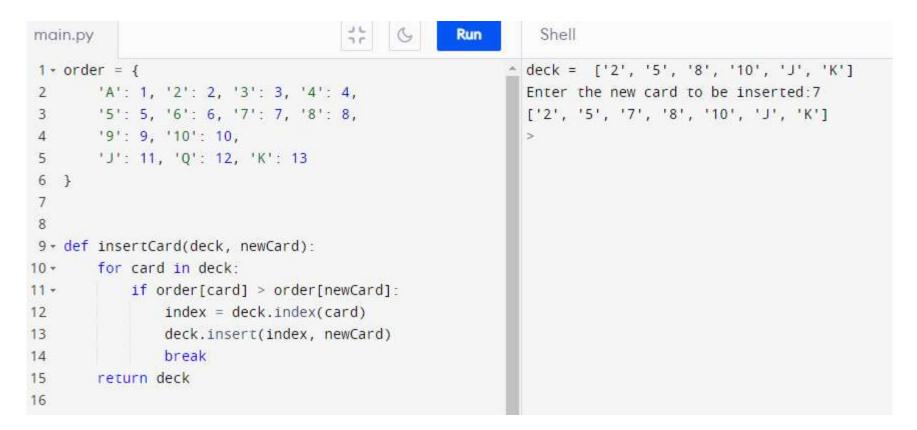
```
print("Minimum of list is ", min_of_list(myList))
```

Find minimum number in a list:

main.py	C3 C Run	Shell		
1 - def min_of_list(aList):		Enter the limit: 5		
2 ~ i	f not aList:	Enter the elements:		
3	return None			
4 m	inVal = aList[0]	- 1		
5+ f	or number in aList[1:]:	5		
6 *	if number < minVal:	-2		
7	minVal = number	6		
8 r	eturn minVal	8		
9		Minimum of list is -2		
10 myList = []		>		
<pre>11 limit = int(input("Enter the limit: "))</pre>				
<pre>12 print("Enter the elements:\n")</pre>				
13 - for i	<pre>in range(limit):</pre>			
14 e	<pre>lement = int(input())</pre>			
15 m	yList.append(element)			
16				
<pre>17 print("Minimum of list is ", min_of_list(myList))</pre>				
18				

Insert a card in a list of sorted cards

Playing cards are one of the techniques of sorting and the steps are shown as follows:


- Start with an empty left hand and cards face down on the table.
- Then remove one card at a time from the table and Insert it into the correct position in the left hand.
- <u>To find a correct position for a card</u>, we compare it with each of the cards already in the hand from left to right.
- Once the position is found, the cards from that position are moved to the next higher indexed position and in that order.
- New card is inserted at the current position.

```
order = {
   'A': 1, '2': 2, '3': 3, '4': 4,
    '5': 5, '6': 6, '7': 7, '8': 8,
    '9': 9, '10': 10,
    'J': 11, 'Q': 12, 'K': 13
}
def insertCard(deck, newCard):
   for card in deck:
        if order[card] > order[newCard]:
           index = deck.index(card)
           deck.insert(index, newCard)
            break
    return deck
deck = ['2', '5', '8', '10', 'J', 'K'] # initial set of cards
print("deck = ", deck)
newCard = input("Enter the new card to be inserted:") # get the new card
insertCard(deck, newCard)
print(deck)
```

Output 1:

```
1 - order = {
                                                       deck = ['2', '5', '8', '10', 'J', 'K']
                                                        Enter the new card to be inserted:Q
2
     'A': 1, '2': 2, '3': 3, '4': 4,
                                                       ['2', '5', '8', '10', 'J', 'Q', 'K']
     '5': 5, '6': 6, '7': 7, '8': 8,
 3
 4
      '9': 9, '10': 10,
                                                       >
      'J': 11, 'Q': 12, 'K': 13
 5
6 }
7
 8
9 - def insertCard(deck, newCard):
       for card in deck:
10 -
11 -
      if order[card] > order[newCard]:
              index = deck.index(card)
12
       deck.insert(index, newCard)
13
      break
14
       return deck
15
16
17
18 deck = ['2', '5', '8', '10', 'J', 'K'] # initial
       set of cards
19 print("deck = ", deck)
20 newCard = input("Enter the new card to be inserted
       :") # get the new card
```

Output 2:

Summary:

1. Find a minimum in a list :

- One way is to sort the list of elements in ascending order and get the first element as minimum.
- Another method is to compare each element with other.
 - As an initial step, first element of the list is considered as minimum element.
 - And in each iteration, each element in the list is compared with the minimum.
 - If the element in the list is less than the minimum then swap both elements else compare with the next element in the list.
 - These steps are continued until the end of the list and finally print the minimum.

Summary:

- 2. insert a card in a list of sorted cards :
 - Start with an empty left hand and cards face down on the table.
 - Then remove one card at a time from the table and Insert it into the correct position in the left hand.
 - To find a correct position for a card, we compare it with each of the cards already in the hand from left to right.
 - Once the position is found, the cards from that position are moved to the next higher indexed position and in that order.
 - New card is inserted at the current position.

