Topic: 1.6 - CAYLEY HAMILTON THEOREM
Cayley-Hamiton Theorem:
Every square matrix satisfies its own Characteristic equation.
Uses of cayley-Hamilton theorem:
To calculate (i) the positive integral powers of A and (i) the inverse of a square matrix A.

Problem:
verity that $A=\left[\begin{array}{cc}1 & 2 \\ 2 & -1\end{array}\right]$ satisfies its own characteristic equation and hence find A^{h}.
Sole:

$$
\text { Given } A=\left[\begin{array}{cc}
1 & 2 \\
2 & -1
\end{array}\right]
$$

The Char. equ. of A is $\lambda^{2}-s_{1} \lambda+s_{2}=0$.
Where $S_{1}=1+(-1)=0$

$$
S_{2}=|A|=-1-4=-5
$$

The chan. equ. is $\lambda^{2}-0 \lambda-5=0$
$\left[\begin{array}{lll}B y C-N \text {. Every, } & \text { square } \lambda^{2}-5=0 \\ \text { matrix }\end{array}\right.$ satisfies its own char.equ. $]$ (ie) To prove: $A^{2}-5 I=07$ (1)

$$
A^{2}=A X A=\left(\begin{array}{cc}
1 & 2 \\
2 & -1
\end{array}\right) \times\left(\begin{array}{cc}
1 & 2 \\
2 & -1
\end{array}\right)
$$

Accredited by NBA - AICTE and Accredited by NAAC - UGC with 'A' Grade Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai

$$
\begin{aligned}
& =\left[\left.\begin{array}{cc}
1+4 & 2-2 \\
2-2 & H+1
\end{array} \right\rvert\,\right. \\
& =\left[\begin{array}{ll}
5 & 0 \\
0 & 5
\end{array}\right] \\
& =\left[\begin{array}{ll}
5 & 51 \\
0 & 5
\end{array}\right]-5\left[\begin{array}{ll}
1 & 0 \\
0 & 5
\end{array}\right]-\left[\begin{array}{ll}
5 & 0 \\
0 & 5
\end{array}\right] \\
& =\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

\therefore The given matrix A satisfies its own cha. Equ.
To find A^{h} :
consider $A^{2}-5 I=0$

$$
\Rightarrow A^{2}=5 I
$$

Multiply A^{2} on both sides

$$
\begin{aligned}
A^{4} & =A^{5}(55) \\
& =\left[\begin{array}{ll}
5 & 0 \\
0 & 5
\end{array}\right]\left[\begin{array}{ll}
5 & 0 \\
0 & 5
\end{array}\right]=\left[\begin{array}{cc}
25 & 0 \\
0 & 25
\end{array}\right]
\end{aligned}
$$

Find A^{-1} is $A=\left[\begin{array}{ccc}1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & -1\end{array}\right]$, using Cayley-Hamilton theorem.
Solve.
The char. equ. of A is $\lambda^{3}-s_{1} x^{2}+s_{2} \lambda-s_{3}=0$
where $S_{1}=1+2-1=2$

$$
\begin{aligned}
S_{2} & =\left|\begin{array}{ll}
2 & -1 \\
1 & -1
\end{array}\right|+\left|\begin{array}{cc}
1 & 4 \\
2 & -1
\end{array}\right|+\left|\begin{array}{cc}
1 & -1 \\
3 & 2
\end{array}\right| \\
& =(-2+1)+(-1-8)+(2+3) \\
& =-1+(-9)+5 \\
& =-5 \\
S_{3} & =|A|
\end{aligned}=1(-2+1)+1(-3+2)+4(3-4) .
$$

\therefore The cha eque is $\lambda^{3}-2 \lambda^{2}-5 \lambda+6=0$.
By Cayley Hamilton theorem,
Every square matrix satisfies its own chac.equ.

$$
\begin{equation*}
\therefore A^{3}-2 A^{2}-5 A+6 I=0 \tag{1}
\end{equation*}
$$

fo. find A^{-1}

$$
\text { (1) } \times A^{-1} \Rightarrow A^{2}-2 A-5 I+6 A^{-1}=0
$$

$$
\begin{aligned}
& A^{2}-2 A-5 I+6 A^{-1}-0 \\
& 6 A^{-1}=-A^{2}+2 A+5 I \\
& A^{-1}=\frac{1}{6}\left[\begin{array}{lll}
-A^{2}+2 A+5 I
\end{array}\right] \\
& A^{2}=A \times A=\left[\begin{array}{ccc}
1 & -1 & 4 \\
3 & 2 & -1 \\
2 & 1 & -1
\end{array}\right]\left[\begin{array}{ccc}
1 & -1 & 4 \\
3 & 2 & -1 \\
2 & 1 & -1
\end{array}\right] \\
&=\left[\begin{array}{ccc}
1-3+8 & -1-2+4 & 4+1-4 \\
3+6-2 & -3+4-1 & 12-2+1 \\
2+3-2 & -2+2-1 & 8-1+1
\end{array}\right] \\
&=\left[\begin{array}{ccc}
6 & 1 & 1 \\
7 & 0 & 11 \\
3 & -1 & 8
\end{array}\right] \\
&=A^{2}+2 A+5 I=\left[\begin{array}{ccc}
-6 & -1 & -1 \\
-7 & 0 & -11 \\
-3 & 1 & -8
\end{array}\right]+\left[\begin{array}{ccc}
2 & -2 & 8 \\
4 & -2 \\
4 & 2 & -2
\end{array}\right]+\left[\begin{array}{ccc}
5 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 5
\end{array}\right] \\
&=\left[\begin{array}{ccc}
1 & -3 & 7 \\
-1 & 9 & -13 \\
1 & 3 & -5
\end{array}\right] \\
& \Rightarrow=\frac{1}{6}\left[\begin{array}{cc}
1 & -3 \\
-1 & 9 \\
-13 \\
\hline & 1 \\
3 & -5
\end{array}\right]
\end{aligned}
$$

Accredited by NBA - AICTE and Accredited by NAAC - UGC with 'A' Grade Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai

If $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 2\end{array}\right]$, find A^{n} inkerms $0.1 r$.
Solve:

$$
\text { Let } A=\left[\begin{array}{ll}
1 & 2 \\
0 & 2
\end{array}\right]
$$

The cha. equ. of A is $x^{2}-s_{1} x+\rho_{2}=0$ where $S_{1}=1+2=3$

$$
S_{2}=|A|=2-0=2
$$

\therefore The char. equ. is $\left.\begin{array}{rl}\lambda^{2}-3 \lambda+2=0 \\ & \Rightarrow(\lambda-2)(\lambda-1)=0 \\ \lambda=2, \lambda=1\end{array}\right)$ Hence the Eigenvalues of x are 1,2 .

To find A^{n}
When λ^{n} is divided by $\lambda^{2}-3 \lambda+2$
let the quotient be $Q(\lambda)$ and remainder be $a \lambda+b$

$$
\begin{equation*}
\lambda^{n}=\left(\lambda^{2}-3 \lambda+2\right) Q(\lambda)+a \lambda+b \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& \text { when } x=1 \\
& \Rightarrow 1^{n}=a+b \\
& 2 a+b=2^{n} \\
& a+b=1^{n} \quad
\end{aligned} \quad \begin{aligned}
& \text { when } x=2 \\
& \text { (1) } \Rightarrow 2^{n}=2 a+b \tag{2}
\end{align*}
$$

Solving (2) \& (3) we get

$$
\begin{aligned}
& \text { (2) }-(3) \Rightarrow a=2^{n}-1^{n} \\
& \text { (2) }-2 \times(3) \Rightarrow b=-2^{n}+2\left(1^{n}\right)
\end{aligned}
$$

(ie) $a=2^{n}-1^{n}$

$$
b=2\left(1^{n}\right)-2^{n}
$$

Replacing $D=2\left(1^{n}\right)-2$ matrix A in (1), $\left.A^{n}=\left(A^{2}-3 A+2\right) Q(A)+a A+5.\right]$
[By $C-H \quad A^{2}-3 A+2 I=0$].

$$
\text { (1) } \Rightarrow A^{n}=a A+b I-1 . \begin{array}{ll}
1 & =a \\
A^{n} & =\left(2^{n}-1^{n}\right)\left[\begin{array}{ll}
1 & 2 \\
0 & 2
\end{array}\right]+\left[2(1)^{n}-2^{n}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{array}
$$

