AN AUTONOMOUS INSTITUTION

Accredited by NBA - AICTE and Accredited by NAAC - UGC with ' A ' Grade Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai

Topic: 2. 5- D'ALEMBERT'S RATIO TEST

D' Alembert 's ratio test.
The series zen of poritive terms is convergent it $\lim _{n \rightarrow \infty} \frac{4 n+1}{u_{n}}<1$
ic divergent if $\lim _{n \rightarrow \infty} \frac{4 n m}{4 n}>1$
$\geq \lim _{n \rightarrow \infty} \frac{4 n-1}{u n}=1$. the text fork.

Norris

test for sire flowing caver (i) un in not of the order $\frac{1}{n^{3}}$ (vi) un involves variables like $x^{n}, x^{2 n} \ldots$. (w) en impeder $n!,(m+i),(n!)^{\circ}, \ldots$.心- The vember of factors in the NoTeD. increase steadily from term lo term lethe $\frac{1}{3}+\frac{12}{3 \cdot 5}+\frac{1-2 \cdot 3}{3-3 \cdot 1} \cdots \cdot$

AN AUTONOMOUS INSTITUTION

Accredited by NBA - AICTE and Accredited by NAAC - UGC with 'A' Grade Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai

AN AUTONOMOUS INSTITUTION
Accredited by NBA - AICTE and Accredited by NAAC - UGC with 'A' Grade Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai
(3). Test the convergence of the

$$
\frac{3}{4+1}+\frac{3^{3}}{44^{2}+1}+\frac{3^{3}}{4^{3}+1}+\cdots \cdots \cdots
$$

Sown

$$
\begin{aligned}
& u_{n+1}=\frac{3^{n-1}}{4 n^{n+1}+1} \\
& \frac{\Delta n-1}{4 n}=\frac{3^{n+4}}{4^{n+1}+1} \times \frac{44^{n}+1}{3^{n}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{3}{4}\left(\frac{1 \rightarrow \frac{4}{4 n}}{4 \frac{1}{44^{2 n}}}\right) \\
& \lim _{n \rightarrow \infty} \frac{\ln +1}{\ln }=\frac{3}{4}<1
\end{aligned}
$$ Convergent.

AN AUTONOMOUS INSTITUTION

Accredited by NBA - AICTE and Accredited by NAAC - UGC with ' A ' Grade Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai

$$
\begin{aligned}
& \text { (3). Test the convergence of the seciex. } \\
& 12020 \\
& \frac{21}{3}+\frac{4 \cdot 7}{3 \cdot 5}+\frac{2 \sqrt{4} \cdot 10}{3 \cdot 5 \cdot 7}+\cdots . \\
& \text { sain. } \\
& \begin{array}{l}
a=1 \\
d=3
\end{array} \\
& 1_{n}=a+(n-1) d \\
& =3 n+1 \\
& 3,5, \pi, \ldots \text { are in } D P \quad \begin{array}{l}
a=3 \\
d=a .
\end{array} \\
& \lambda n=\text { AnN: }
\end{aligned}
$$

$$
\begin{aligned}
& \text { legal }=\frac{41 \cdot 7 \cdot 10 \cdots(3(n+1)+1)}{3 \cdot 5 \cdots(2(n+1)+1)} \\
& =\frac{2 \ldots+10 \cdot(3 n+1)(3 n+4)}{3 \cdot-1 \cdot(2 n+1)(2 n+3)} \\
& \frac{4 n+1}{4 n}=\frac{3 m+1}{2 n+3}=\frac{n(3+4, n)}{n(2+3, n)}= \\
& \lim _{n \rightarrow \infty} \frac{u_{n+1}}{u_{n}}=\lim _{n \rightarrow \infty} \frac{3+n}{2+3 / n}=3 / 2>1 \\
& \therefore \text { thence lr ratio tex } \leq \text { unis } \\
& \text { civengert. }
\end{aligned}
$$

AN AUTONOMOUS INSTITUTION
Accredited by NBA - AICTE and Accredited by NAAC - UGC with 'A' Grade Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai
(4). Teat Itw corvergert of Stie mexies

$$
\frac{1^{2}}{4^{2}}+\frac{1^{2} \cdot 5^{2}}{4^{2}-8^{2}}+\frac{1^{2}-5^{2} \cdot 9^{2}}{4^{2}-8^{2}-12^{2}} \cdots \cdots
$$

xdr .

I 1.8.8.12 are in A.P ta $=4 n$.

$$
\begin{aligned}
& u_{n}=\frac{1^{2} 3^{2} \cdot a^{2} \cdots\left(4-(4-3)^{2}\right.}{4^{2} B^{2} \cdots(4 n)^{2}} \\
& \text { unnt }=\frac{x^{2} \cdot 5^{2} \cdots(4 n-3)^{2}(4, n+1)^{2}}{4^{2} \cdot 8^{2} \ldots(4 n)^{2}(4 n+4)^{2}} \\
& \frac{u n+1}{u_{n}}=\frac{(2+n+1)^{2}}{(4 n+4)^{2}}=\frac{n^{2}\left(4+\frac{1}{n}\right)^{2}}{n^{2}\left(4+\frac{4}{n}\right)^{2}}=\frac{\left(24+\frac{1}{n}\right)^{2}}{\left(4+\frac{4}{n}\right)^{2}} \\
& \lim _{n \rightarrow \infty} \frac{4 n+1}{4 n}=\frac{\lim _{n \rightarrow \infty}\left(4+\frac{1}{n}\right)^{a}}{\left(4+\frac{4}{n}\right)^{b}}=\frac{16}{16}=1
\end{aligned}
$$

$\lim _{n \rightarrow \infty} \frac{u_{n+1}}{\ln }=1 \Rightarrow$ Rexivo bet fain.
Apply Racribets Test.

$$
\begin{aligned}
& \frac{u_{n}}{u_{n+1}}-1=\frac{(4+n+4)^{4}-(4 n+1)^{2}}{(12 n+1)^{2}}=\frac{2+n+15}{(4 n+1)^{2}} . \\
& \lim _{n \rightarrow \infty} n\left(\frac{u_{n}}{\left.u_{n+1}-1\right)}=\lim _{n \rightarrow \infty} \frac{n-n\left(24+1+\frac{15}{n+}\right)}{\left(4+\frac{1}{n}\right)^{2}}=\frac{3}{2}>1\right.
\end{aligned}
$$

AN AUTONOMOUS INSTITUTION

Accredited by NBA - AICTE and Accredited by NAAC - UGC with ' A ' Grade Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai

