
Process Scheduling
• Maximize CPU use, quickly switch processes onto CPU

for time sharing
• Process scheduler selects among available processes

for next execution on CPU
• Maintains scheduling queues of processes

– Job queue – set of all processes in the system
– Ready queue – set of all processes residing in main

memory, ready and waiting to execute
– Device queues – set of processes waiting for an I/O

device
– Processes migrate among the various queues

1 / 16Prof.B.Anuradha / CS6401 / Process Scheduling, Operation of processes1/7/2017

Ready Queue And Various I/O Device Queues

2 / 16Prof.B.Anuradha / CS6401 / Process Scheduling, Operation of processes1/7/2017

Representation of Process Scheduling

Queueing diagram represents queues, resources, flows

3 / 16Prof.B.Anuradha / CS6401 / Process Scheduling, Operation of processes1/7/2017

Schedulers
• Short-term scheduler (or CPU scheduler) – selects which process should be

executed next and allocates CPU
– Sometimes the only scheduler in a system
– Short-term scheduler is invoked frequently (milliseconds) (must be

fast)
• Long-term scheduler (or job scheduler) – selects which processes should be

brought into the ready queue
– Long-term scheduler is invoked infrequently (seconds, minutes) (may

be slow)
– The long-term scheduler controls the degree of multiprogramming

• Processes can be described as either:
– I/O-bound process – spends more time doing I/O than computations,

many short CPU bursts
– CPU-bound process – spends more time doing computations; few very

long CPU bursts
• Long-term scheduler strives for good process mix

4 / 16Prof.B.Anuradha / CS6401 / Process Scheduling, Operation of processes1/7/2017

Addition of Medium Term Scheduling
Medium-term scheduler can be added if degree of

multiple programming needs to decrease
• Remove process from memory, store on disk, bring

back in from disk to continue execution: swapping

5 / 16Prof.B.Anuradha / CS6401 / Process Scheduling, Operation of processes1/7/2017

Multitasking in Mobile Systems
• Some mobile systems (e.g., early version of iOS) allow only one

process to run, others suspended
• Due to screen real estate, user interface limits iOS provides for a

– Single foreground process- controlled via user interface
– Multiple background processes– in memory, running, but not

on the display, and with limits
– Limits include single, short task, receiving notification of

events, specific long-running tasks like audio playback
• Android runs foreground and background, with fewer limits

– Background process uses a service to perform tasks
– Service can keep running even if background process is

suspended
– Service has no user interface, small memory use

6 / 16Prof.B.Anuradha / CS6401 / Process Scheduling, Operation of processes1/7/2017

Context Switch
• When CPU switches to another process, the system

must save the state of the old process and load the
saved state for the new process via a context switch

• Context of a process represented in the PCB
• Context-switch time is overhead; the system does no

useful work while switching
– The more complex the OS and the PCB the longer

the context switch
• Time dependent on hardware support

– Some hardware provides multiple sets of registers
per CPU multiple contexts loaded at once

7 / 16Prof.B.Anuradha / CS6401 / Process Scheduling, Operation of processes1/7/2017

Operations on Processes

• System must provide mechanisms
for:
– process creation,
– process termination,

8 / 16Prof.B.Anuradha / CS6401 / Process Scheduling, Operation of processes1/7/2017

Process Creation
• Parent process create children processes, which, in

turn create other processes, forming a tree of
processes

• Generally, process identified and managed via a
process identifier (pid)

• Resource sharing options
– Parent and children share all resources
– Children share subset of parent’s resources
– Parent and child share no resources

• Execution options
– Parent and children execute concurrently
– Parent waits until children terminate

9 / 16Prof.B.Anuradha / CS6401 / Process Scheduling, Operation of processes1/7/2017

A Tree of Processes in Linux
init

pid = 1

sshd
pid = 3028

login
pid = 8415

kthreadd
pid = 2

sshd
pid = 3610

pdflush
pid = 200

khelper
pid = 6

tcsch
pid = 4005

emacs
pid = 9204

bash
pid = 8416

ps
pid = 9298

10 / 16Prof.B.Anuradha / CS6401 / Process Scheduling, Operation of processes1/7/2017

Process Creation (Cont.)
• Address space

– Child duplicate of parent
– Child has a program loaded into it

• UNIX examples
– fork() system call creates new process
– exec() system call used after a fork() to replace the

process’ memory space with a new program

11 / 16Prof.B.Anuradha / CS6401 / Process Scheduling, Operation of processes1/7/2017

C Program Forking Separate Process

12 / 16Prof.B.Anuradha / CS6401 / Process Scheduling, Operation of processes1/7/2017

Creating a Separate Process via Windows API

13 / 16Prof.B.Anuradha / CS6401 / Process Scheduling, Operation of processes1/7/2017

Process Termination

• Process executes last statement and then asks the operating
system to delete it using the exit() system call.
– Returns status data from child to parent (via wait())
– Process’ resources are deallocated by operating system

• Parent may terminate the execution of children processes
using the abort() system call. Some reasons for doing so:
– Child has exceeded allocated resources
– Task assigned to child is no longer required
– The parent is exiting and the operating systems does not

allow a child to continue if its parent terminates

14 / 16Prof.B.Anuradha / CS6401 / Process Scheduling, Operation of processes1/7/2017

Process Termination
• Some operating systems do not allow child to exists if its parent

has terminated. If a process terminates, then all its children
must also be terminated.
– cascading termination. All children, grandchildren, etc. are

terminated.
– The termination is initiated by the operating system.

• The parent process may wait for termination of a child process
by using the wait()system call. The call returns status
information and the pid of the terminated process

pid = wait(&status);
• If no parent waiting (did not invoke wait()) process is a

zombie
• If parent terminated without invoking wait , process is an

orphan
15 / 16Prof.B.Anuradha / CS6401 / Process Scheduling, Operation of processes1/7/2017

Multiprocess Architecture – Chrome Browser

• Many web browsers ran as single process (some still do)
– If one web site causes trouble, entire browser can hang or crash

• Google Chrome Browser is multiprocess with 3 different types of processes:
– Browser process manages user interface, disk and network I/O
– Renderer process renders web pages, deals with HTML, Javascript. A new

renderer created for each website opened
• Runs in sandbox restricting disk and network I/O, minimizing effect of

security exploits
– Plug-in process for each type of plug-i

16 / 16Prof.B.Anuradha / CS6401 / Process Scheduling, Operation of processes1/7/2017

