

SNS College of Engineering Coimbatore - 641107

Asymptotic notations

AP/IT

- O notation: asymptotic "less than": f(n) "≤" g(n)
- Ω notation: asymptotic "greater than": f(n) "≥" g(n)
- Θ notation: asymptotic "equality": f(n) "=" g(n)

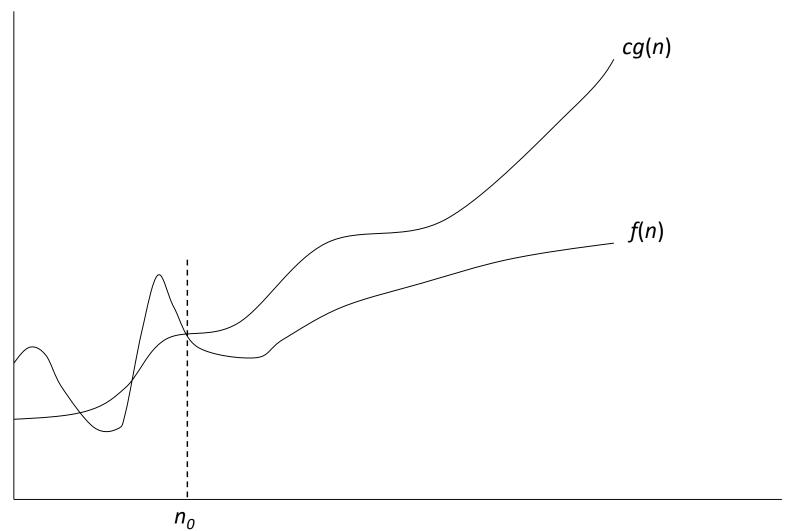
Big-O

$$f(n) = O(g(n))$$
: there exist positive constants c and n_0 such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$

If $f(n) = O(n^2)$, then:

- •f(n) can be larger than n^2 sometimes, **but...**
- •I can choose some constant c and some value n_0 such that for **every** value of n larger than $n_0 : f(n) < cn^2$
- •That is, for values larger than n_0 , f(n) is never more than a constant multiplier greater than n^2

Visualization of O(g(n))



Big Omega – Notation

 $\Omega() = A$ **lower** bound

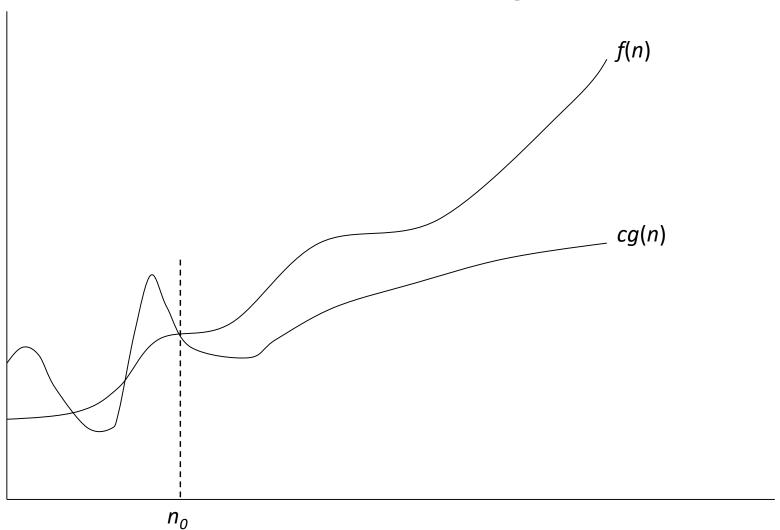
$$f(n) = \Omega(g(n))$$
: there exist positive constants c and n_0 such that $0 \le f(n) \ge cg(n)$ for all $n \ge n_0$

$$n^2 = \Omega(n)$$

Let
$$c = 1$$
, $n_0 = 2$

For all
$$n \ge 2$$
, $n^2 > 1 \times n$

Visualization of $\Omega(g(n))$



Θ-notation

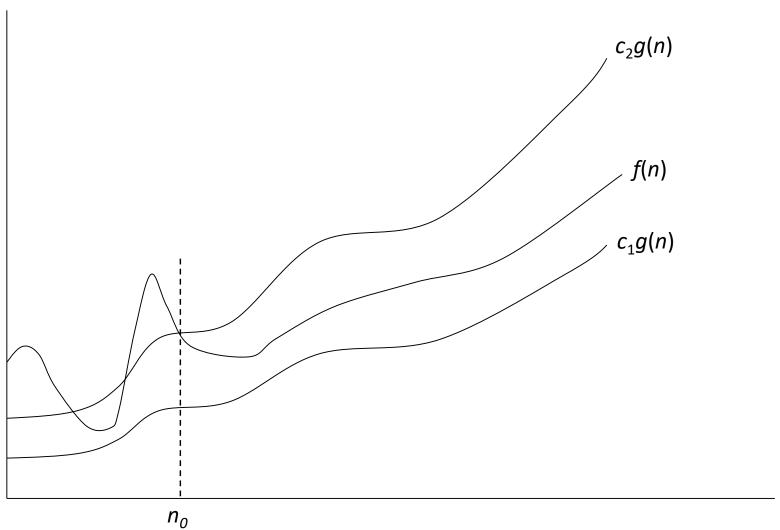
Big-O is not a tight upper bound.

In other words $n = O(n^2)$

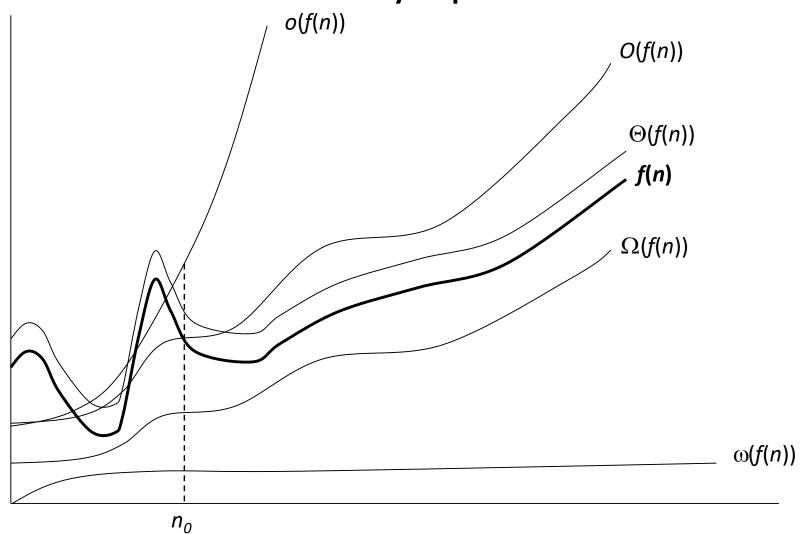
Θ provides a tight bound

$$f(n) = \Theta(g(n))$$
: there exist positive constants c_1, c_2 , and n_0 such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$

Visualization of $\Theta(g(n))$



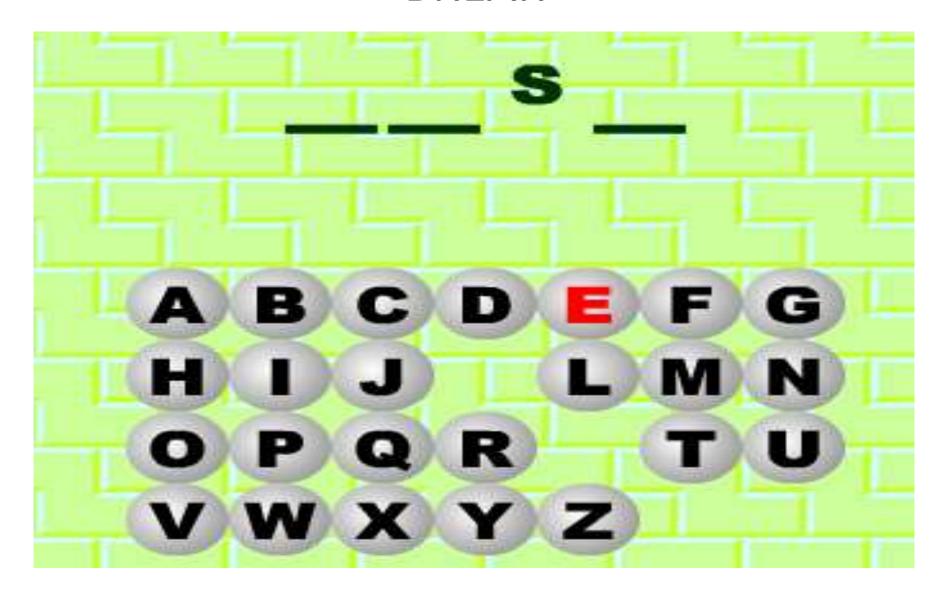
Visualization of Asymptotic Growth

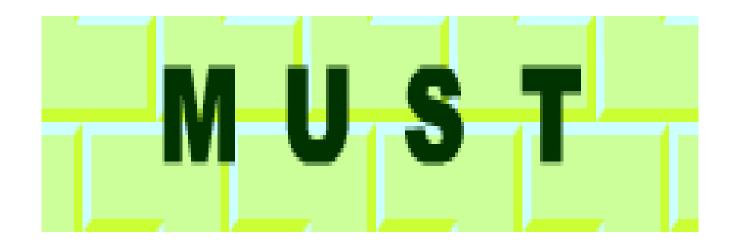


Analogy to Arithmetic Operators

$$f(n) = O(g(n))$$
 \approx $a \le b$
 $f(n) = \Omega(g(n))$ \approx $a \ge b$
 $f(n) = \Theta(g(n))$ \approx $a = b$

BREAK





Answer:

2 3 1