

SNS College of Engineering Coimbatore - 641107

Fundamentals of Algorithmic Problem Solving

AP/IT

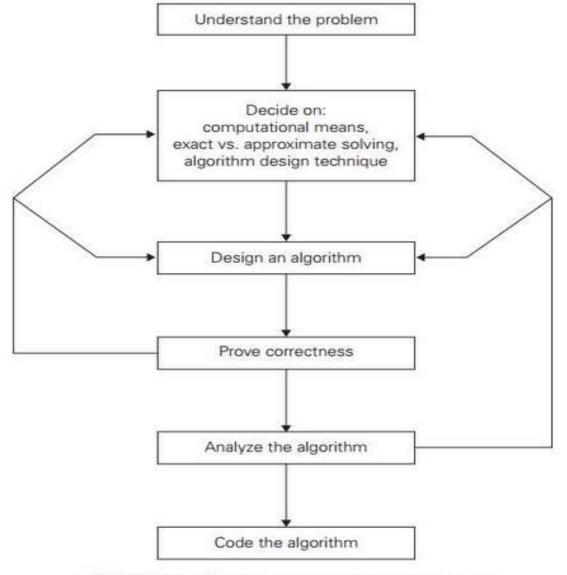


FIGURE 1.2 Algorithm design and analysis process.

Understanding the Problem

- What are problem objects?
- What are operations to the objects?

Decide on Computation

- How object would be represented?
- How operation would be implemented?

Design an algorithm

Build computational model of solution process

Prove Correctness

Correct output of every legitimate

- ✓ Input in finite time
- Based on correct math formula
- By induction method
- ✓ Tracing can prove correctness

Analyze the Algorithm

- Efficiency-time and space
- Simplicity-clear and sequence
- Generality-range of input
- Optimality-optimal algorithm

Code the algorithm

- How objects and operations in algorithm are represented in chosen programming language?
- Can every problem be solved by algorithm?

Assessment

- 1) What are the three properties of algorithm?
- 2) Enlist the procedure of algorithm?
- 3) Draw Framework

Solution

1)

- Correctness
- Termination
- Efficiency

2)

- Finite
- Complete
- Unique
- Effective