

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE NAME: 19EE01 BASIC ELECTRICAL AND ELECTRONICS ENGINEERING

I YEAR /I SEMESTER MECHANICAL ENGINEERING

Unit 1 – Electrical Circuits and Measurements

Electrodynamometer type wattmeter

PURPOSE OF INSTRUMENTS

Ammeter is used to measure _____

Voltmeter is used to measure _____

Wattmeter is used to measure _____

POWER

1.In general the Power is defined as an ability or capacity to do something or act in a particular way.

2.In terms of electrical engineering Power = V*I

3. Wattmeter is used to measure the electrical power

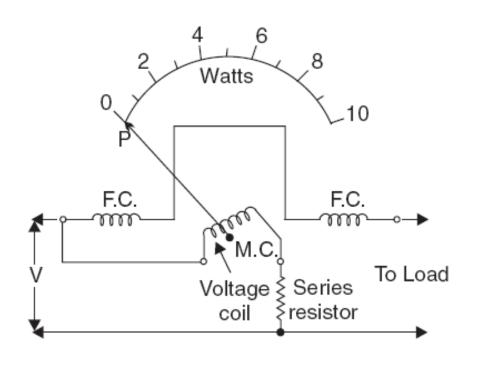
WATTMETERS

A wattmeter is a combination of an ammeter and a voltmeter and, therefore consists of two coils known as current coil and pressure coil. The operating torque is produced due to interaction of fluxes on account of currents in

current and pressure coils.

Types of wattmeters

- 1. Dynamometer wattmeter
- 2. Induction wattmeter
- 3. Electrostatic wattmeter



DYNAMOMETER WATTMETER

F.C. = Fixed coils (current coils)

M.C. = Moving coil (voltage coil)

P = Pointer

If the coils are connected so that a value of current proportional to the load voltage flows in one, and a value of current proportional to the load current flows


ASSESSMENT 1

- 1. Power is _____
 - a) rate of doing work
 - b) rate of producing voltage
 - c) rate of generating current
 - d) rate of overcoming friction

- a) ohmmeter and galvanometer
- b) ohmmeter and voltmeter
- c) ammeter and voltmeter
- d) ammeter and galvanometer

CALIBRATION

Let v = supply voltage,

i = load current, and

R = resistance of the moving coil circuit.

Current through fixed coils, if = i.

Current through the moving coil, im =V/R

Deflecting torque, $Td \propto if \times im \propto iV/R$

ERRORS

- 1. The error may creep in due to the inductance of the moving or voltage coil. However, the high non-inductive resistance connected in series with coil swamps, to a great extent, the phasing effect of the voltage coil inductance.
- 2. There may be error in the indicated power due to the following:
 - (i) Some voltage drop in the current circuit.
 - (ii) The current taken by the voltage coil.

PROS AND CONS

Advantages

- (i) The scale of the instrument is uniform
- (ii) High degree of accuracy can be obtained by careful design, hence these are used for calibration purposes.

Disadvantages

- (i) The error due to the inductance of pressure coil at low power factor is very serious
- (ii) Stray field may effect the reading of the instrument

Assessment 2

- 1. A wattmeter consists of a current coil and a potential coil.
 - a) True
 - b) False
- 2. In a Dynamometer type wattmeter, the fixed coil is split into _____
 - a) 4
 - b) 3
 - c) 2
 - d) 1
- 3. List the advantages of Dynamometer type wattmeter.

REFERENCES

- 1. Bhattacharya. S.K, "Basic Electrical and Electronics Engineering", Pearson Education, (2017)
- 2. Muthu Subramanian R, Salivahanan S," Basic Electrical and Electronics Engineering", Tata McGraw Hill Publishers, (2009)
- 3. V.Mittle" Basic Electrical Engineering", Tata McGraw Hill Publishers, (2017)
- 4. Nagrath. I.J, "Electronics: Analog and Digital", Prentice Hall India Pvt. Ltd., (2013)

THANK YOU

