SNS COLLEGE OF ENGINEERING

Kurumbapalayam(Po), Coimbatore - 641107
Accredited by NAAC-UGC with 'A' Grade
Approved by AICTE, Recognized by UGC \& Affiliated to Anna University, Chennai
Department of Information Technology Course Name - Software Engineering

II Year / III Semester
Unit-3 Reasoning Under Uncertainity
23.Oct. 2022

Traditional Logic

Based on predicate logic
Three important assumptions:
Predicate descriptions are sufficient w.r.t. to the domain
Information is consistent
Knowledge base grows monotonically

Non-monotonic Logic

Addresses the three assumptions of traditional logic
Knowledge is incomplete
No knowledge about p: true or false ${ }^{23 .}$.
Prolog - closed world assumption
Knowledge is inconsistent
Based on how the world usually works
Most birds fly, but Ostrich doesn't
Knowledge base grows non-monotonically
New observation may contradict the existing knowledge, thus the existing knowledge may need removal.
Inference based on assumptions, how come if the assumptions are later shown to be incorrect
Three modal operators are introduced

Fuzzy Sets

Classic sets
Completeness: x in either A or $\neg A$
Exclusive: can not be in both A and $\neg A$
Fuzzy sets
Violate the two assumptions
Possibility theory -- measure of confidence or believe
Probability theory - randomness
Process imprecision
Introduce membership function
Believe $x \in A$ in some degree between 0 and 1 , inclusive
The fuzzy set representation for "small integers."

A fuzzy set representation for the sets short, medium, and tall males.

Fuzzy Set Operations
Fuzzy set operations are defined as the operations of membership functions
Complement: $\neg \mathrm{A}=\mathrm{C}$
$\mathrm{mC}=1-\mathrm{mA}$
Union: $A \cup B=C$
$\mathrm{mC}=\max (\mathrm{mA}, \mathrm{mB})$
Intersection: $\mathrm{A} \cap \mathrm{B}=\mathrm{C}$
$\mathrm{mC}=\min (\mathrm{mA}, \mathrm{mB})$
Difference: $A-B=C$

$$
\mathrm{mC}=\max (0, \mathrm{~mA}-\mathrm{mB})
$$

Rule format and computation

If x is A and y is B then z is C $\mathrm{mC}(\mathrm{z})=\min (\mathrm{mA}(\mathrm{x}), \mathrm{mB}(\mathrm{y}))$
If x is A or y is B then z is C $m C(z)=\max (m A(x), m B(y))$
If x is $n o t A$ then z is C

$$
\mathrm{mC}(\mathrm{z})=1-\mathrm{mA}(\mathrm{x})
$$

The fuzzy regions for the input values θ (a) and $\mathrm{d} \theta / \mathrm{dt}$ (b).
N - Negative, Z - Zero, P - Positive

a.

b.

