Rule-Based Deduction Systems

The way in which a piece of knowledge is expressed by a human expert carries important information,
if the person has fever and feels tummy-pain then she may have an infection.
In logic it can be expressed as follows:
$\forall x$. (has_fever(x) \& tummy_pain $(x) \rightarrow$ has_an_infection (x))
If we convert this formula to
we loose the content as then we may have equivalent formulas like:
(i) has fever $(\mathrm{x}) \&$ ~has_an_infection $(\mathrm{x}) \rightarrow$ ~tummy pain (x)
(ii)

Notice that:
\square (i) and (ii) are logically equivalent to the original sentence \square they have lost the main information contained in its formulation.

The main idea behind the forward/backward production systems is:
\square to take advantage of the implicational form in which production rules are stated by the expert
\square and use that information to help achieving the goal. In the present systems the formulas have two forms:
\square rules
\square and facts

Eorward production systems

Rules are the productions stated in implication form.
Rules express specific knowledge about the problem.
\square Facts are assertions not expressed as implications.
\square The task of the system will be to prove a goal formula with these facts and rules.
\square In a forward production system the rules are expressed as F-rules
\square F-rules operate on the global database of facts until the termination condition is achieved.
\square This sort of proving system is a direct system rather than a refutation system.

Facts
\square Facts are expressed in AND/OR form.
\square An expression in AND/OR form consists on sub-expressions of literals connected by \& and V symbols.
\square An expression in AND/OR form is not in clausal form.

orward production systems

Steps to transform facts into AND/OR form for forward system:

1. Eliminate (temporarily) implication symbols.
2. Reverse quantification of variables in first disjunct by moving negation symbol.
3. Skolemize existential variables.
4. Move all universal quantifiers to the front an drop.
5. Rename variables so the same variable does not occur in different main conjuncts

Main conjuncts are small AND/OR trees, not necessarily sum of literal clauses as in Prolog.

EXAMPLE

$$
\begin{aligned}
& \exists \mathrm{u} . \forall \mathrm{v} .\{\mathrm{q}(\mathrm{v}, \mathrm{u}) \& \sim[[\mathrm{r}(\mathrm{v}) \mathrm{vp} \mathrm{p}(\mathrm{v})] \& \mathrm{~s}(\mathrm{u}, \mathrm{v})]\} \\
& \mathrm{q}(\mathrm{w}, \mathrm{a}) \&\{[\sim r(\mathrm{v}) \& \sim p(\mathrm{v})] \mathrm{v} \sim \mathrm{~s}(\mathrm{a}, \mathrm{v})\}
\end{aligned}
$$

Based Deduction Systems: forward production syster

Rules in a forward production system will be applied to the AND/OR araph to produce new transformed graph structures.
We assume that rules in a forward production system are of the form:
$L==>$ W,
where L is a literal and
Recall that a rule of the form (L1 V L2) $==>$ W is equivalent to the pair of rules: $-1=>$ V L2 $==>$ W.

forward production systems

Steps to transform the rules into a free-quantifier form:

1. Eliminate (temporarily) implication symbols.
2. Reverse quantification of variables in first disjunct by moving negation symbol.
3. Skolemize existential variables.
4. Move all universal quantifiers to the front and drop.
5. Restore implication.

All variables appearing on the final expressions are assumed to be universally quantified.
E.g. Original formula:

Converted formula:

forward production systems

A full example;
Fido barks and bites, or Fido is not a dog.
$\square \quad$ (R1) All terriers are dogs.
\square (R2) Anyone who barks is noisy

Based on these facts, prove that: "there exists someone who is not a terrier or who is noisy."

Logic representation:
(barks(fido) \& bites(fido)) $\vee \sim$ dog(fido)
R1: terrier $(\mathrm{X}) \rightarrow \operatorname{dog}(\mathrm{X})$
R2:
goal: $\quad \exists$ w.(~terrier(w) v noisy(w))

From facts to goal

AND node

AND/OR Graph for the 'terrier' problem:

B-Rules

We restrict B-rules to expressions of the form: W ==> L, where W is an expression in AND/OR form and L is a literal, and the scope of quantification of any variables in the implication is the entire implication.
Recall that $W==>(L 1 \& L 2)$ is equivalent to the two rules: $W==>L 1$ and $W==>L 2$. An important property of logic is the duality between assertions and goals in theorem-proving systems.
Duality between assertions and goals allows the goal expression to be treated as if it were an assertion.

Conversion of the goal expression into AND/OR form:

1. Elimination of implication symbols.
2. Move negation symbols in.
3. Skolemize existential variables.
4. Drop existential quantifiers. Variables remaining in the AND/OR form are considered to be existentially quantified.

Goal clauses are conjunctions of literals and the is the clause form of the goal well-formed formula.

1. Facts:
```
dog(fido)
~barks(fido)
wags-tail(fido)
meows(myrtle)
```

Rules:
R1: [wags-tail(x1) \& dog(x1)] \rightarrow friendly(x1)
R2: [friendly(x2) \& ~barks(x2)] \rightarrow ~afraid(y2,x2)
R3: $\operatorname{dog}(x 3) \rightarrow$ animal(x3)
R4: cat(x4) \rightarrow animal(x4)
R5: meows(x5) $\rightarrow \operatorname{cat(x5)}$
Suppose we want to ask if there are a cat and a dog such that the cat is unafraid of the dog.
The goal expression is:
$\exists x . \exists y .[\operatorname{cat}(x) \& \operatorname{dog}(y) \& \sim \operatorname{afraid}(x, y)]$

2. The blocks-word situation is described by the following set of wffs:
on_table(a)
on_table(c)
on(d, c)
on(b,a)
heavy(b)
clear(e)
clear(d)
heavy(d)
wooden(b)
on(e,b)

The following statements provide general knowledge about this blocks word:

Every big, blue block is on a green block.

Each heavy, wooden block is big.
All blocks with clear tops are blue.
All wooden blocks are blue.
Represent these statements by a set of implications having single-literal consequents.
Draw a consistent AND/OR solution tree (using B-rules) that solves the problem: "Which block is on a green block?

HOMEWORK Problem 2. Transformations rules and goal:

Facts:

f1: on_table(a)
f2: on_table(c)
f3: on(d, c)
f4: on(b,a)
f5: heavy(b)
Rules:
R1: $\operatorname{big}(\mathrm{y} 1)^{\wedge}$ blue $(\mathrm{y} 1) \rightarrow$ green $(\mathrm{g}(\mathrm{y} 1))$
R2: $\quad \operatorname{big}(\mathrm{y} 0)^{\wedge}$ blue(y 0$) \rightarrow$ on $(\mathrm{y} 0, \mathrm{~g}(\mathrm{y} 0))$
R3: heavy $(z)^{\wedge}$ wooden $(z) \rightarrow \operatorname{big}(z)$
R4: clear $(x) \rightarrow$ blue(x)
R5: wooden(w) \rightarrow blue(w)
f6: clear(e)
f7: clear(d)
f8: heavy(d)
f9: wooden(b)
f10: on(e,b)

Goal:

green(u) ${ }^{\wedge}$ on(v, u)
Which block is on a green block?
\square We have a set of facts containing personnel data for a business organization
\square and we want an automatic system to answer various questions about personal matters.

- Facts

John Jones is the manager of the Purchasing Department.
manager(p-d,john-jones)
works_in(p-d, joe-smith)
works_in(p-d,sally-jones)
works_in(p-d,pete-swanson)
Harry Turner is the manager of the Sales Department.
manager(s-d,harry-turner)
works_in(s-d,mary-jones)
works_in(s-d,bill-white)
married(john-jones,mary-jones)

