
Department of Artificial
Intelligence and Data Science

Course Name – Introduction to
Artificial Intelligence

II Year / III Semester

Unit 2 Rule based deduction system

SNS COLLEGE OF ENGINEERING
Kurumbapalayam(Po), Coimbatore – 641 107

Accredited by NAAC-UGC with ‘A’ Grade
Approved by AICTE, Recognized by UGC & Affiliated to Anna

University, Chennai

Rule-Based Deduction Systems

The way in which a piece of knowledge is expressed by a human expert
carries important information,
example: if the person has fever and feels tummy-pain then she may have an

infection.

In logic it can be expressed as follows:

x. (has_fever(x) & tummy_pain(x) has_an_infection(x))

If we convert this formula to clausal form we loose the content as then we
may have equivalent formulas like:

(i) has_fever(x) & ~has_an_infection(x) ~tummy_pain(x)

(ii) ~has_an_infection(x) & tummy_pain(x) ~has_fever(x)

Notice that:
(i) and (ii) are logically equivalent to the original sentence

they have lost the main information contained in its formulation.

Forward production systems

The main idea behind the forward/backward

production systems is:

to take advantage of the implicational form in which

production rules are stated by the expert

and use that information to help achieving the goal.

In the present systems the formulas have two

forms:

rules

and facts

Forward production systems

Rules are the productions stated in implication form.
Rules express specific knowledge about the problem.

Facts are assertions not expressed as implications.

The task of the system will be to prove a goal formula with these
facts and rules.

In a forward production system the rules are expressed as F-rules

F-rules operate on the global database of facts until the termination
condition is achieved.

This sort of proving system is a direct system rather than a
refutation system.

Facts
Facts are expressed in AND/OR form.

An expression in AND/OR form consists on sub-expressionsof
literals connected by & and V symbols.

An expression in AND/OR form is not in clausal form.

Rule-Based Deduction Systems

Steps to transform facts into AND/OR form for forward system:

1. Eliminate (temporarily) implication symbols.
2. Reverse quantification of variables in first disjunct by

moving negation symbol.

3. Skolemize existential variables.

4. Move all universal quantifiers to the front an drop.

5. Rename variables so the same variable does not occur in
different main conjuncts

- Main conjuncts are small AND/OR trees, not necessarily sumof
literal clauses as in Prolog.

EXAMPLE

Original formula: u. v. {q(v, u) & ~[[r(v) v p(v)] & s(u,v)]}

converted formula: q(w, a) & {[~r(v) & ~p(v)] v ~s(a,v)}

Forward production systems

All variables appearing on the final expressions are assumed to be universally quantified.

Conjunction of two main
conjuncts Various variables in conjuncts

Rule-Based Deduction Systems: forward production systems

F-rules
Rules in a forward production system will be applied to the AND/OR graph to

produce new transformed graph structures.

We assume that rules in a forward production system are of the form:

L ==> W,

where L is a literal and W is a formula in AND/OR form.
Recall that a rule of the form (L1 V L2) ==> W is equivalent to the pair of
rules: L1 ==> W V L2 ==> W.

[barks(fido) & bites(fido)] v ~dog(fido)

~terrier(z)noisy(z)

goal nodes

~dog(fido)
R1

~terrier(fido)

barks(fido) & bites(fido)

barks(fido) bites(fido)

R2

noisy(fido)

{fido/z}

{fido/z}

OR nodeAND node

•Dog(Fido)

•barks(Fido)

•Not terrier(Fido)\

•Noisy(Fido)

•NOT Dog(Fido)

•Not terrier(Fido)\

We have to prove that
there is X that is noisy.
X=Fido

Or we have to prove that there is
X that X is not a terrier

prove that: “there exists someone
who is not a terrier or who is
noisy.”

We cannot prove
this branch but we
do not have to since
one branch of OR
was proven by
showing Fido

forward production systems

Steps to transform the rules into a free-quantifier form:
1. Eliminate (temporarily) implication symbols.

2. Reverse quantification of variables in first disjunct by moving
negation symbol.

3. Skolemize existential variables.

4. Move all universal quantifiers to the front and drop.

5. Restore implication.

All variables appearing on the final expressions are assumed to be
universally quantified.

E.g. Original formula:

Converted formula:

x.(y. z. (p(x, y, z)) u. q(x, u))

p(x, y, f(x, y)) q(x, u).

Skolem
function

Restored
implication

Rule-Based Deduction Systems

A full example:

Fact: Fido barks and bites, or Fido is not a dog.

(R1) All terriers are dogs.

(R2) Anyone who barks is noisy.

Based on these facts, prove that: “there exists someone
who is not a terrier or who is noisy.”

Logic representation:

(barks(fido) & bites(fido)) v ~dog(fido)

R1: terrier(x) dog(x)

R2: barks(y) noisy(y)

goal: w.(~terrier(w) v noisy(w))

forward production systems

goal

Rule-Based Deduction Systems: forward production systems

AND/OR Graph for the ‘terrier’ problem:

[barks(fido) & bites(fido)] v ~dog(fido)

barks(fido) & bites(fido)

noisy(fido)

~terrier(z)noisy(z)

goal nodes

~dog(fido)

R1 applied in reverse

~terrier(fido)barks(fido) bites(fido)

R2 applied forward

{fido/z}

{fido/z}

OR nodeAND node

From facts to goal

B-Rules

We restrict B-rules to expressions of the form: W ==> L,

where W is an expression in AND/OR form and L is a literal,

and the scope of quantification of any variables in the implication is the entire
implication.

Recall that W==>(L1 & L2) is equivalent to the two rules: W==>L1 and W==>L2.

An important property of logic is the duality between assertions and goals in
theorem-proving systems.

Duality between assertions and goals allows the goal expression to be treated as
if it were an assertion.

Conversion of the goal expression into AND/OR form:

1.

2.

3.

4.

Elimination of implication symbols.

Move negation symbols in.

Skolemize existential variables.

Drop existential quantifiers. Variables remaining in the AND/OR form are

considered to be existentially quantified.

Goal clauses are conjunctions of literals and the disjunction of these clauses is the
clause form of the goal well-formed formula.

Backward production systems

Example 1 of formulation of Rule-Based Deduction Systems

1. Facts:

dog(fido)

~barks(fido)

wags-tail(fido)

meows(myrtle)

Rules:

R1: [wags-tail(x1) & dog(x1)] friendly(x1)

R2: [friendly(x2) & ~barks(x2)] ~afraid(y2,x2)

R3: dog(x3) animal(x3)

R4: cat(x4) animal(x4)

R5: meows(x5) cat(x5)

Suppose we want to ask if there are a cat and a dog such
that the cat is unafraid of the dog.

The goal expression is:

x. y.[cat(x) & dog(y) & ~afraid(x,y)]

We treat the goal expression
as an assertion

x. y.[cat(x) & dog(y) & ~afraid(x,y)]

dog(fido)

[cat(x)

R2

meows(x5=myrtle)

x=x5

dog(y) ~afraid(x,y)]

R5

Y=Fido

[friendly(x2) ~barks(x2)

~barks(x2=fido)

wags-tail(x1) dog(x1)]

X1=Fido

dog(fido)

R1

R2

wags-tail(fido)

X1=Fido

Rule-Based Deduction Systems

2. The blocks-word situation is described by the following set of wffs:

on_table(a)

on_table(c)

on(d,c)

on(b,a)

heavy(b)

clear(e)

clear(d)

heavy(d)

wooden(b)

on(e,b)

The following statements provide general knowledge about this blocks
word:

Every big, blue block is on a green block.

Each heavy, wooden block is big.

All blocks with clear tops are blue.

All wooden blocks are blue.

Represent these statements by a set of implications having single-literal
consequents.

Draw a consistent AND/OR solution tree (using B-rules) that solves the
problem: “Which block is on a green block?”

Homework: formulation of Rule-Based Deduction Systems

HOMEWORK Problem 2. Transformation of

rules and goal:

Facts:

f1:

f2:

on_table(a)

on_table(c)

f6:

f7:

clear(e)

clear(d)

f3: on(d,c) f8: heavy(d)

f4: on(b,a) f9: wooden(b)

f5: heavy(b) f10: on(e,b)

Rules:

R1:

R2:

big(y1) ^ blue(y1) green(g(y1))

big(y0) ^ blue(y0) on(y0,g(y0))

Every big, blue block is on a green block.

“ “ “ “ “ “ “ “ “

R3: heavy(z) ̂ wooden(z) big(z) Each heavy, wooden block is big.

R4: clear(x) blue(x) All blocks with clear tops are blue.

R5: wooden(w) blue(w) All wooden blocks are blue.

Goal:

green(u) ̂ on(v,u) Which block is on a green block?

HOMEWORK PROBLEM 3. Information

Retrieval System

We have a set of facts containing personnel data for a business
organization

and we want an automatic system to answer various questions about

personal matters.

Facts

John Jones is the manager of the Purchasing Department.

manager(p-d,john-jones)

works_in(p-d, joe-smith)

works_in(p-d,sally-jones)

works_in(p-d,pete-swanson)

Harry Turner is the manager of the Sales Department.

manager(s-d,harry-turner)

works_in(s-d,mary-jones)

works_in(s-d,bill-white)

married(john-jones,mary-jones)

