

SNS COLLEGE OF ENGINEERING

Kurumbapalayam(Po), Coimbatore – 641 107 Accredited by NAAC-UGC with 'A' Grade Approved by AICTE, Recognized by UGC & Affiliated to Anna University, Chennai

Department of Artificial Intelligence and Data Science Course Name – Introduction to Artificial Intelligence

II Year / III Semester

Unit 2 Constraint Propagation

Constraint satisfaction problems (CSPs)

- Standard search problem: state is a "black box" any data structure that supports successor function and goal test
- CSP:
 - state is defined by variables X_i with values from domain D_i
 - goal test is a set of constraints specifying allowable combinations of values for subsets of variables
- Simple example of a formal representation language
- Allows useful general-purpose algorithms with more power than standard search algorithms

- Variables WA, NT, Q, NSW, V, SA, T
- Domains $D_i = \{\text{red,green,blue}\}$
- Constraints: adjacent regions must have different colors
- e.g., WA ≠ NT, or (WA,NT) in {(red,green),(red,blue),(green,red), (green,blue),(blue,red),(blue,green)}

Example: Map-Coloring

- Solutions are complete and consistent assignments
- e.g., WA = red, NT = green, Q = red, NSW = green, V = red, SA = blue, T = green

Constraint graph

- Binary CSP: each constraint relates two variables
- Constraint graph: nodes are variables, arcs are constraints

Varieties of CSPs

- Discrete variables
 - finite domains:
 - *n* variables, domain size $d \rightarrow O(d^n)$ complete assignments
 - e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete)

• infinite domains:

- integers, strings, etc.
- e.g., job scheduling, variables are start/end days for each job
- need a constraint language, e.g., $StartJob_1 + 5 \leq StartJob_3$
- Continuous variables
 - e.g., start/end times for Hubble Space Telescope observations
 - linear constraints solvable in polynomial time by LP

Varieties of constraints

- Unary constraints involve a single variable,
 - e.g., $SA \neq green$
- Binary constraints involve pairs of variables,
 - e.g., $SA \neq WA$
- Higher-order constraints involve 3 or more variables,
 - e.g., cryptarithmetic column constraints

STATE MONS

Backtracking search

• Variable assignments are commutative, i.e.,

[WA = red then NT = green] same as [NT = green then WA = red]

- > => Only need to consider assignments to a single variable at each node
- Depth-first search for CSPs with single-variable assignments is called backtracking search
- Can solve *n*-queens for $n \approx 25$

Improving backtracking efficiency

- General-purpose methods can give huge gains in speed:
 - Which variable should be assigned next?
 - In what order should its values be tried?
 - Can we detect inevitable failure early?