
SNS COLLEGE OF ENGINEERING
Kurumbapalayam(Po), Coimbatore – 641 107

Accredited by NAAC-UGC with ‘A’ Grade

Approved by AICTE, Recognized by UGC & Affiliated to Anna University, Chennai

Department of Artificial Intelligence and
Data Science

Course Name – Introduction to Artificial
Intelligence

II Year / III Semester

Unit 1 Breadth and depth first

25-Aug-22 1

25-Aug--22 2

What is BFS Algorithm (Breadth-First Search)?

Breadth-first search (BFS) is an algorithm that is used to graph data or searching tree or traversing

structures. The full form of BFS is the Breadth-first search.

The algorithm efficiently visits and marks all the key nodes in a graph in an accurate breadthwise fashion.

This algorithm selects a single node (initial or source point) in a graph and then visits all the nodes

adjacent to the selected node. Remember, BFS accesses these nodes one by one.

Once the algorithm visits and marks the starting node, then it moves towards the nearest unvisited nodes

and analyses them. Once visited, all nodes are marked. These iterations continue until all the nodes of the

graph have been successfully visited and marked.

25-Aug-22 3

What is Graph traversals?
A graph traversal is a commonly used methodology for locating the vertex position in the graph. It is an advanced
search algorithm that can analyze the graph with speed and precision along with marking the sequence of the visited
vertices. This process enables you to quickly visit each node in a graph without being locked in an infinite loop.

25-Aug-22 4

25-Aug-22 5

How does BFS Algorithm Work?

Graph traversal requires the algorithm to visit, check, and/or update every single un-visited node in a

tree-like structure. Graph traversals are categorized by the order in which they visit the nodes on the

graph.

BFS algorithm starts the operation from the first or starting node in a graph and traverses it thoroughly.

Once it successfully traverses the initial node, then the next non-traversed vertex in the graph is visited

and marked.

Hence, you can say that all the nodes adjacent to the current vertex are visited and traversed in the first

iteration. A simple queue methodology is utilized to implement the working of a BFS algorithm, and it

consists of the following steps:

25-Aug-22 6

Step 2) In case the vertex V is not accessed then

add the vertex V into the BFS Queue.

Step 3) Start the BFS search, and after

completion, Mark vertex V as visited.

Step 1) Each vertex or node in the graph is known. For instance, you

can mark the node as V.

25-Aug-22 7

Step 4) The BFS queue is still not empty, hence remove the vertex V of the graph

from the queue.

Step 5) Retrieve all the remaining vertices on the graph that are adjacent to the

vertex V

Step 6) For each adjacent vertex let’s say V1, in case it is not visited yet then add V1

to the BFS queue

Step 7) For each adjacent vertex let’s say V1, in case it is not visited yet then add V1

to the BFS queue

Depth-First Search

825-Aug-22

The depth-first search or DFS algorithm raverses or explores data structures, such as trees and graphs.

The algorithm starts at the root node (in the case of a graph, you can use any random node as the root

node) and examines each branch as far as possible before backtracking.

When a dead-end occurs in any iteration, the Depth First Search (DFS) method traverses a network in a

deathward motion and uses a stack data structure to remember to acquire the next vertex to start a search.

https://www.simplilearn.com/tutorials/data-structure-tutorial/what-is-data-structure
https://www.simplilearn.com/tutorials/data-structure-tutorial/trees-in-data-structure
https://www.simplilearn.com/tutorials/data-structure-tutorial/graphs-in-data-structure
https://www.simplilearn.com/tutorials/data-structure-tutorial/what-is-an-algorithm
https://www.simplilearn.com/tutorials/data-structure-tutorial/stacks-in-data-structures

25-Aug-22 9

Example of Depth-First Search Algorithm

The outcome of a DFS traversal of a graph is a spanning tree. A spanning tree is a graph that is devoid

of loops. To implement DFS traversal, you need to utilize a stack data structure with a maximum size

equal to the total number of vertices in the graph.

To implement DFS traversal, you need to take the following stages.

Step 1: Create a stack with the total number of vertices in the graph as the size.

Step 2: Choose any vertex as the traversal's beginning point. Push a visit to that vertex and add it to the

stack.

Step 3 - Push any non-visited adjacent vertices of a vertex at the top of the stack to the top of the stack.

Step 4 - Repeat steps 3 and 4 until there are no more vertices to visit from the vertex at the top of the

stack.

Step 5 - If there are no new vertices to visit, go back and pop one from the stack using backtracking.

Step 6 - Continue using steps 3, 4, and 5 until the stack is empty.

Step 7 - When the stack is entirely unoccupied, create the final spanning tree by deleting the graph's

unused edges.

https://www.simplilearn.com/tutorials/data-structure-tutorial/spanning-tree-in-data-structure

25-Aug-22 10

You should push vertex A to the top of the stack.

Consider the following graph as an example of how to use the dfs algorithm.

Step 1: Mark vertex A as a visited source node by selecting it as a source node.

Step 2: Any nearby unvisited vertex of vertex A, say B, should be visited.

•You should push vertex B to the top of the stack.

25-Aug-22 11

Step 3: From vertex C and D, visit any adjacent unvisited vertices of vertex B. Imagine you

have chosen vertex C, and you want to make C a visited vertex.

•Vertex C is pushed to the top of the stack.

Step 4: You can visit any nearby unvisited vertices of vertex C, you need to select vertex D and

designate it as a visited vertex.

•Vertex D is pushed to the top of the stack.

Step 5: Vertex E is the lone unvisited adjacent vertex of vertex D, thus marking it as visited.

•Vertex E should be pushed to the top of the stack.

25-Aug-22 12

Step 6: Vertex E's nearby vertices, namely vertex C and D have been visited, pop vertex E from

the stack.

Step 7: Now that all of vertex D's nearby vertices, namely vertex B and C, have been visited,

pop vertex D from the stack.

Step 8: Similarly, vertex C's adjacent vertices have already been visited; therefore, pop it from

the stack.

25-Aug-22 13

Step 9: There is no more unvisited adjacent vertex of b, thus pop it from the stack.

Step 10: All of the nearby vertices of Vertex A, B, and C, have already been visited, so pop vertex A

from the stack as well.

