
SNS COLLEGE OF ENGINEERING
Kurumbapalayam(Po), Coimbatore – 641 107

Accredited by NAAC-UGC with ‘A’ Grade

Approved by AICTE, Recognized by UGC & Affiliated to Anna University, Chennai

Department of Artificial Intelligence and Data

Science

Course Name – Introduction to Artificial

Intelligence

II Year / III Semester

Unit 1 Heuristic search,Hill climbing,Best first

Heuristic Search
• Heuristic - a “rule of thumb” used to help guide search

– often, something learned experientially and recalled when needed

• Heuristic Function - function applied to a state in a search space

to indicate a likelihood of success if that state is selected

– heuristic search methods are known as “weak methods” because of their

generality and because they do not apply a great deal of knowledge

– the methods themselves are not domain or problem specific, only the

heuristic function is problem specific

• Heuristic Search –

– given a search space, a current state and a goal state

– generate all successor states and evaluate each with our heuristic function

– select the move that yields the best heuristic value

• Here and in the accompanying notes, we examine various

heuristic search algorithms

– heuristic functions can be generated for a number of problems like games,

but what about a planning or diagnostic situation?

Example Heuristic Function
• Simple heuristic for 8-puzzle:

– add 1 point for each tile in the right location

– subtract 1 point for each tile in the wrong location

• Better heuristic for 8-puzzle
– add 1 point for each tile in the right location

– subtract 1 point for each move to get a tile to the right location

• The first heuristic only takes into account the local tile position
– it doesn’t consider such factors as groups of tiles in proper position

– we might differentiate between the two types of heuristics as local vs
global

1 2 3

4 5 6

7 8

4 2 3

5 7 1

6 8

Goal: Current: Moves:

7 down (simple: -5, better: -8)

6 right (simple: -5, better: -8)

8 left (simple: -3, better: -7)

Example Heuristics: 8 Puzzle

From the start state, which operator do we select (which state do we move

into)? The first two heuristics would recommend the middle choice (in this case,

we want the lowest heuristic value) while the third heuristic tells us nothing

useful (at this point because too much of the puzzle is not yet solved)

Hill Climbing
• Visualize the search space as a 3-dimensional space

– a state is located at position <x, y> where these values represent
the state’s variables, and its z value (height) is its heuristic worth

• this creates a topology where you want to reach the highest point

– in actuality, most problems have states that have more than just
<x, y> values

• so in fact, hill climbing takes place in some n+1 dimensions where n is the
number of variables that define the state and the last value is the heuristic
value, again, indicated as height

– to solve a problem, pick a next state that moves you “uphill”

• Given an initial state perform the following until you
reach a goal state or a deadend
– generate all successor states

– evaluate each state with the heuristic function

– move to the state that is highest

• This algorithm only tries to improve during each selection,
but not find the best solution

Variations of Hill Climbing
• In simple hill climbing, generate and evaluate states until

you find one with a higher value, then immediately move
on to it

• In steepest ascent hill climbing, generate all successor
states, evaluate them, and then move to the highest value
available (as long as it is greater than the current value)
– in both of these, you can get stuck in a local maxima but not

reach a global maxima

• Another idea is simulated annealing
– the idea is that early in the search, we haven’t invested much

yet, so we can make some downhill moves
• in the 8 puzzle, we have to be willing to “mess up” part of the solution

to move other tiles into better positions

– the heuristic worth of each state is multiplied by a probability
and the probability becomes more stable as time goes on

• simulated annealing is actually applied to neural networks

Note: we are skipping dynamic programming, a topic more appropriate for 464/564

Best-first search
• One problem with hill climbing is that you are

throwing out old states when you move uphill
and yet some of those old states may wind up
being better than a few uphill moves
– the best-first search algorithm uses two sets

– open nodes (those generated but not yet selected)

– closed nodes (already selected)

• start with Open containing the initial state

• while current <> goal and there are nodes left in
Open do

– set current = best node* in Open and move
current to Closed

– generate current’s successors

– add successors to Open if they are not already
in Open or Closed

A (5)

B (4) C (3) D (6)

G (6) H (4) E (2) F (3)

I (3) J (8)

Closed

Open

•- this requires searching through the list of
Open nodes, or using a priority queue

Below, after exploring A’s

children, we select D. But

E and F are not better than

B, so next we select B,

followed by G.

Now, our possible choices

are I, J, H, E and F

Best-First Search Algorithm

Best-first

Search

Example

Heuristic Search and Cost
• Consider in any search problem there are several different

considerations regarding how good a solution is
– does it solve the problem adequately?

– how much time does it take to find the solution (computational cost)?

– how much effort does the solution take? (practical cost)
• notice that the second and third considerations may be the same, but not always

• It will often be the case that we want to factor in the length of the
path of our search as part of our selection strategy
– we enhance our selection mechanism from finding the highest heuristic

value to finding the best value f(n) = g(n) + h(n)
• f(n) – cost of selecting state n

• g(n) – cost of reaching state n from the start state

• h(n) – heuristic value for state n

– if we use this revised selection mechanism in our best-first search algorithm,
it is called the the A Algorithm

• Since we want to minimize f(n), we will change our heuristic
functions to give smaller values for better states
– some of our previous functions gave higher scores for better states

Example: 8 Puzzle Redux

Other Factors in Heuristic Search
• Admissibility

– if the search algorithm is guaranteed to find a minimal path
solution (if one exists) – that is, minimize practical cost, not
search cost

• a breadth-first search will find one

– if our A Algorithm guarantees admissibility, it is known as an
A* Algorithm with the selection formula f*(n) = g*(n) + h*(n)
where g*(n) is the shortest path to reach n and h*(n) is the cost
of finding a solution from n

• h(n) is an estimated cost derived by a heuristic function, h*(n) may not be
possible, it requires an oracle

• Informedness
– a way to compare two or more heuristics – if one heuristic

always gives you a more accurate prediction in the A*
algorithm, then that heuristic is more informed

• Monotonicity – we will skip this
– there are other search strategies covered in the notes

accompanying this chapter

Constraint Satisfaction
• Many branches of a search space can be

ruled out by applying constraints

• Constraint satisfaction is a form of best-
first search where constraints are applied to
eliminate branches

– consider the Cryptorithmetic problem, we can
rule out several possibilities for some of the
letters

• After making a decision, propagate any
new constraints that come into existence

– constraint Satisfaction can also be applied to
planning where a certain partial plan may
exceed specified constraints and so can be
eliminated

SEND

+ MORE

MONEY

M = 1

S = 8 or 9

O = 0 or 1

O = 0 …

N = E + 1 (since

N != E)

Now we might

try an exhaustive

search from here

