
UNIT
I/O ORGANIZATION AND

PARALLELISM
Accessing I/O devices – Interrupts – Direct Memory Access

circuits – Standard I/O Interfaces (PCI, SCSI, USB)

Parallelism : Concepts and Challenges

processor – Graphics Processing Unit

UNIT V
I/O ORGANIZATION AND

PARALLELISM
Direct Memory Access – Buses–Interface

Standard I/O Interfaces (PCI, SCSI, USB) –Instruction Level

Parallelism : Concepts and Challenges – Introduction to multicore

Recap the previous Class

Dr.B.Anuradha / ASP / CSE / SEM 3 / COA

Recap the previous Class

03-12-2022

Dr.B.Anuradha / ASP / CSE / SEM 3 / COA

• To keep the pipeline full, we try to exploit parallelism among instructions

–Sequence of unrelated instructions that can be overlapped without causing

hazard.

–Related instructions must be separated by appropriate number of clock

cycles equal to the pipeline latency between the pair of instructions.

Instruction producing result Destination instruction
FP ALU operation FP ALU operation
FP ALU operation Store double

Load double FP ALU operations
Load double Store double

03-12-2022

exploit parallelism among instructions.

Sequence of unrelated instructions that can be overlapped without causing

Related instructions must be separated by appropriate number of clock

cycles equal to the pipeline latency between the pair of instructions.

instruction Latency (clock cycles)
operation 3
double 2

operations 1
double 0

Introduction

Dr.B.Anuradha / ASP / CSE / SEM 3 / COA

• In addition, branches have one clock cycle delay.

• The functional units are fully pipelined (except division), such that an operation

can be issued on every clock cycle.

–As an alternative, the functional units can also be replicated.

• A simple compiler technique that can create additional parallelism between

instructions.

–Helps in reducing pipeline penalty.

03-12-2022

In addition, branches have one clock cycle delay.

(except division), such that an operation

As an alternative, the functional units can also be replicated.

that can create additional parallelism between

Dr.B.Anuradha / ASP / CSE / SEM 3 / COA

Example 1

for (i=1000; i>0; i--)
x[i] = x[i] + s;

Add a scalar s to a vector x

Assume:

•R1: points to x[1000]

•F2: contains the scalar s

•R2: initialized such that 8(R2) is the

address of x[0]

Loop:

MIPS32
code

03-12-2022

Loop:L.D F0,0(R1)
ADD.DF4,F0,F2

S.D F4,0(R1) ADDI
R1,R1,#-8 BNE
R1,R2,Loop

Loop: F0,0(R1)

F4,F0,F2

F4,0(R1)
R1,R1,#-8
R1,R2,Loop

L.D
stall
ADD.D
stall
stall
S.D
ADDI
BNE
stall

9 clock cycles
per iteration
(with 4 stalls)

Dr.B.Anuradha / ASP / CSE / SEM 3 / COA

• We now carry out instruction scheduling

– Moving instructions around and making

Loop:L.D F0,0(R1)
ADD.DF4,F0,F2

S.D F4,0(R1) ADDI
R1,R1,#-8 BNE
R1,R2,Loop

Loop:L.D F0,0(R1)
ADDI R1,R1,#-8 ADD.D

F4,F0,F2
S.D F4,8(R1)
BNE R1,R2,Loop

03-12-2022

scheduling.

and making necessary changes to reduce stalls.

Loop: F0,0(R1)
R1,R1,#-8
F4,F0,F2

L.D
ADDI
ADD.D
stall
stall
BNE
S.D

R1,R2,Loop
F4,8(R1)

7 clock cycles
per iteration
(with 2 stalls)

Dr.B.Anuradha / ASP / CSE / SEM 3 / COA

• We now carry out loop unrolling.

– Replicating the body of the loop multiple

times, so that the loop overhead “per

iteration” reduces.

Loop: L.D F0,0(R1)
ADD.D F4,F0,F2

S.D F4,0(R1) ADDI
R1,R1,#-8 BNE
R1,R2,Loop

Unroll
loop 3
times

• We use different registers for each

iteration.

• Number of stalls per loop = 3 x 4 + 1 = 13

• Clock cycles per loop = 14 + 13 = 27

03-12-2022

Loop: L.D F0,0(R1)
ADD.D F4,F0,F2

S.D F4,0(R1)
L.D F6,-8(R1) ADD.D

F8,F6,F2
S.D F8,-8(R1)
L.D F10,-16(R1) ADD.D

F12,F10,F2 S.D F12,-
16(R1)
L.D F14,-24(R1) ADD.D

F16,F14,F2
S.D F16,-24(R1)

ADDI R1,R1,#-32 BNE
R1,R2,Loop

loop 3

13

Cycles per iteration = 27 / 4
= 6.8

Dr.B.Anuradha / ASP / CSE / SEM 3 / COA

Loop: L.D F0,0(R1)
ADD.DF4,F0,F2
S.D F4,0(R1)
L.D F6,-8(R1)
ADD.DF8,F6,F2
S.D F8,-8(R1)
L.D F10,-16(R1)
ADD.DF12,F10,F2
S.D F12,-16(R1)
L.D F14,-24(R1)
ADD.DF16,F14,F2
S.D F16,-24(R1)

ADDI R1,R1,#-32
BNE R1,R2,Loop

Schedule

the

unrolled

loop

No stalls.

14 / 4 = 3.5

cycles per

iteration

03-12-2022

Loop: L.D F0,0(R1)
L.D F6,-8(R1)
L.D F10,-16(R1)
L.D F14,-24(R1)
ADD.DF4,F0,F2
ADD.DF8,F6,F2
ADD.DF12,F10,F2
ADD.DF16,F14,F2
S.D F4,0(R1)
S.D F8,-8(R1)
S.D F12,-16(R1)

ADDI R1,R1,#-32
BNE R1,R2,Loop
S.D F16,8(R1)

Dr.B.Anuradha / ASP / CSE / SEM 3 / COA

• Loop unrolling can expose more parallelism in instructions that can be

scheduled.

– Effective way of improving pipeline performance.

• Can be used to lower the CPI in architectures where more than one instructions

can be issued per cycle.

a)Superscalar architecture

b)Very Long Instruction Word (VLIW) architecture

Loop

03-12-2022

Loop unrolling can expose more parallelism in instructions that can be

Effective way of improving pipeline performance.

Can be used to lower the CPI in architectures where more than one instructions

Very Long Instruction Word (VLIW) architecture

Unrolling :: Summary

03-12-2022

TEXT BOOK
Carl Hamacher, Zvonko Vranesic and Safwat Zaky, “Computer Organization”, McGraw
Edition 2012.

1. David A. Patterson and John L. Hennessey, “Computer organization and design”, MorganKauffman ,Elsevier, 5th edition, 2014.

2. William Stallings, “Computer Organization and Architecture designing for Performance”, Pearson Education 8th Edition, 2010

3. John P.Hayes, “Computer Architecture and Organization”, McGraw Hill, 3rd Edition, 2002

4. M. Morris R. Mano “Computer System Architecture” 3rd Edition 2007

5. David A. Patterson “Computer Architecture: A Quantitative Approach”, Morgan Kaufmann; 5th edition 2011

REFERENCES

Carl Hamacher, Zvonko Vranesic and Safwat Zaky, “Computer Organization”, McGraw-Hill, 6th

1. David A. Patterson and John L. Hennessey, “Computer organization and design”, MorganKauffman ,Elsevier, 5th edition, 2014.

2. William Stallings, “Computer Organization and Architecture designing for Performance”, Pearson Education 8th Edition, 2010

3. John P.Hayes, “Computer Architecture and Organization”, McGraw Hill, 3rd Edition, 2002

4. M. Morris R. Mano “Computer System Architecture” 3rd Edition 2007

5. David A. Patterson “Computer Architecture: A Quantitative Approach”, Morgan Kaufmann; 5th edition 2011

THANK YOU

Dr.B.Anuradha / ASP / CSE / SEM 3 / COA

