

Department of Information Technology

19IT503 – Internet of Things

UNIT – 5 DESIGN METHODOLOGY & FUTURE TRENDS

Need for IoT Systems Management

IoT can have complex hardware, software and deployment designs including sensors, actuators,

software and network resources, data collection and analysis services and interfaces. Managing

multiple devices within a single system requires advanced management capabilities.

The need for managing IoT systems in described as follows,

 Automating Configuration

 Monitoring Operational & Statistical Data

 Improved Reliability

 System Wide Configurations

 Multiple System Configurations

 Retrieving & Reusing Configurations

Automating Configuration

System management interfaces provide predictable and easy to use management capability and

the ability to automate system configuration. Automation becomes even more important when a

system consist of multiple devices or nodes. In such cases automating system configuration

ensures that all devices have the same configuration and variations or errors due to manual

configurations are avoided.

Monitoring Operational & Statistical Data

Operational data is the data which is related to systems operating parameter and collected by

system at runtime. Statistical data is the data which describes systems performance (E.G CPU

and Memory usage). Management system can help in monitoring operational and statistical data

of a system.

Improved Reliability

A management system that allows validating the system configuration before they are put into

effect can help in improving the system reliability.

System Wide Configurations

For IoT system that consist of multiple devices or nodes, ensuring system wide configuration can

be crucial for the correct functioning of the system. Management approaches in which each

SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore – 641 107

AN AUTONOMOUS INSTITUTION
Accredited by NBA–AICTE and Accredited by NAAC–UGC with ‘A’ Grade

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

device is configured separately can result in system faults. This happens when some system uses

new configuration whereas others use old configuration. To avoid this system wide configuration

is essential to have same configuration across multiple devices using single atomic transactions.

This ensures configuration changes are applied to all system or none.

Multiple System Configurations

For system it may be desirable to have multiple valid configurations which are applied at

different times or in certain conditions

Retrieving & Reusing Configurations

Management systems which have the capability of retrieving configurations from the devices can

help in reusing the configurations for other devices of the same type.

Simple Network Management Protocol (SNMP)

SNMP is a well-known and widely used network management protocol that allows monitoring

and configuring network devices such as routers, switches, servers, printers, etc.

SNMP is an application layer protocol that uses User Datagram Protocol as the transport protocol

on ports 161/162.

SNMP component include

• Network Management Station (NMS) or SNMP Manager

Managed Devices

• SNMP Agent that runs on the device

• Management Information Base (MIB)

Network Management Station (NMS)

NMS executes SNMP commands to monitor and configure the managed device.

Managed Device

It is the device that is being managed and runs a software called SNMP Agent.

SNMP Agent
It is a management software module installed on a managed device. Managed devices can be

network devices like PC, routers, switches, servers, etc. The managed device contains the MIB

which has all the information of the device attributes to be managed.

Management Information Base (MIB)

MIBs use the structure of the management information notation for defining the structure of the

management data. The structure of the management data is defined in the form of variables

which are identified by object identifiers (OIDs) which have a hierarchical structure. Each agent

has its own MIB, which is a collection of all the objects that the manager can manage. MIB is

categorized into eight groups: system, interface, address translation, ip, icmp, tcp, udp, and egp.

These groups are under the mib object.

How SNMP Works?

• The SNMP manager is a host that acts as the client and runs client program, the SNMP

agent acts as the server and the MIB acts as the server's database.

• When the SNMP manager asks the agent a question, the agent uses the MIB to supply the

answer.

• The agent is used to keep the information in a database while the manager is used to

access the values in the database.

• SNMP software agents on network devices and services communicate with a network

management system to relay status information and configuration changes.

• The NMS provides a single interface from which administrators can issue batch

commands and receive automatic alerts.

• SNMP uses a blend of pull and push communications between network devices and the

network management system.

• The SNMP agent, which resides with the MIB on a network device, constantly collects

status information but will only push information to the NMS upon request or when some

aspect of the network crosses a pre-defined threshold known as a trap.

• Trap messages are typically sent to the management server when something significant,

such as a serious error condition, occurs.

Message Types
SNMP defines five types of messages: GetRequest, GetNextRequest, SetRequest, GetResponse,

and Trap.

GetRequest: The GetRequest message is sent from a manager (client) to the agent (server) to

retrieve the value of a variable.

GetNextRequest: The GetNextRequest message is sent from the manager to agent to retrieve

the value of a variable. This type of message is used to retrieve the values of the entries in a

table.

GETBULK Request: Sent by the SNMP manager to the agent to efficiently obtain a potentially

large amount of data, especially large tables. It is introduced in SNMPv2c.

SetRequest: The SetRequest message is sent from a manager to the agent to set a value in a

variable.

RESPONSE: Sent by the agent to the SNMP manager, issued in reply to a GET Request,

GETNEXT Request, GETBULK Request and a SET Request. Contains the values of the

requested variables.

Trap –

These are the message sent by the agent without being requested by the manager. It is sent when

a fault has occurred.

InformRequest –

It was introduced in SNMPv2c, used to identify if the trap message has been received by the

manager or not. The agents can be configured to send trap message continuously until it receives

an Inform message. It is the same as a trap but adds an acknowledgement that the trap doesn’t

provide.

Limitations of SNMP Protocol

 SNMP is stateless in nature and each SNMP request contains all the information to

process the request. The application needs to be intelligent to manage the device.

 SNMP is a connectionless protocol which uses UDP as the transport protocol, making it

unreliable as there was no support for acknowledgement of requests.

 MIBs often lack writable objects without which device configuration is not possible using

SNMP. With the absence of writable objects, SNMP can be used only for device

monitoring and status polling.

 It is difficult to differentiate between configuration and state data in MIBs.

 Retrieving the current configuration from a device can be difficult with SNMP.

 Earlier versions of SNMP did not have strong security features making the management

information vulnerable to network intruders. Though security features were added in the

later versions of SNMP, it increased the complexity a lot.

Network Operator Requirements

Ease of use

From the operators point of view ease of use is a key requirement for any network management

technology.

Distinction between configuration and state data

Configuration data is set of writable data that is required to transform the system from its initial

state to its current state. State data is data which is not configurable. For effective management

solution it is important to make clear distinction between configuration data and state data.

Fetch configuration and state data separately

It should be possible to fetch the configuration data and state data separately from the managed

device. This is useful when the configuration and state date from different from different devices

needs to be compared.

Configuration of the network as a whole

It should be possible for operators to configure the network as a whole rather than individual

devices. This is important for systems which have multiple devices and configuring them within

one network wide transaction is required to ensure the correct operation of the system.

Configuration transactions across devices

Configuration transactions across multiple devices should be supported.

Configuration deltas

It should be possible to generate the operations necessary for going from one configuration state

to another. The device should support configuration deltas with minimal state changes.

Dump and restore configurations

It should be possible to Dump configurations from the devices and restore the configuration to

the devices.

Configuration validation

It should be possible to validate the configurations

Configuration database schemas

There is a need for standardized Configuration database schemas or data models across

operators.

Comparing configurations

Devices should not arbitrarily recorder data so that it is possible to use text processing tools such

as diff to compare configurations.

Role-based access control

Devices should support role based access control model so that the user is given minimum access

necessary to perform the required task.

Consistency of access control lists:

It should be possible to do Consistency checks of access control lists across devices.

Multiple configuration sets

There should be support for multiple configurations sets on devices. This way a distinction can

be provided between candidate and active configurations.

Support for both data-oriented and task oriented access control

While SNMP access control data is data oriented, CLI access control is usually task oriented.

There should be support for both types of access control.

NETCONF
Network Configuration Protocol (NETCONF) is a session-based network management protocol.

NETCONF allows retrieving state or configuration data and manipulating configuration data on

network devices.

NETCONF works on SSH (Secure Shell) transport protocol. In addition to SSH protocol,

NETCONF implementations can support other transport mappings such as Blocks Extensible

Exchange Protocol (BEEP).

Transport layer provides end-to-end connectivity and ensure reliable delivery of messages.

NETCONF uses XML-encoded Remote Procedure Calls (RPCs) for framing request and

response messages.

The RPC layer provides mechanism for encoding of RPC calls and notifications. NETCONF

provides various operations to retrieve and edit configuration data from network devices.

NETCONF Protocol Layers

The Content Layer consists of configuration and state data which is XML-encoded.

The schema of the configuration and state data is defined in a data modeling language called

YANG.

NETCONF provides a clear separation of the configuration and state data. For example <get-

config> retrieves the configuration data only while the operation <get> retrieves the

configuration and state data.

The configuration data resides within a NETCONF configuration datastore on the server. The

NETCONF server resides on the network device. The management application plays the role of

NETCONF client.

For managing the network devices the client establishes a NETCONF session with the server.

When a session is established the client and server exchanges hello messages which contains

information about their capabilities. Client can send multiple requests to the server for retrieving

or editing configuration data.

NETCONF defines one or more configuration data stores. A configuration store contains all the

configuration information to bring the device from its initial state to the operational state.

NETCONF is a connection oriented protocol and NETCONF connection persists between

protocol operations. For authentication, data integrity, and confidentiality NETCONF depends

on transport protocol such as SSH or TLS.

NETCONF overcomes the limitations of SNMP and is suitable not only for monitoring state

information but also for configuration management.

YANG

YANG is a data modeling language used to model configuration and state data manipulated by

the NETCONF protocol

YANG modules contain the definitions of the configuration data, state data, RPC calls that can

be issued and the format of the notifications. YANG modules defines the data exchanged

between the NETCONF client and server.

YANG models data using a hierarchical, tree-based structure with nodes. YANG defines four

nodes types. Each node has a name, and depending on the node type, the node might either

define a value or contain a set of child nodes.

A module comprises of a number of 'leaf' nodes which are organized into a hierarchical tree

structure. The 'leaf' nodes are specified using the 'leaf' or 'leaf-list' constructs.

Leaf nodes are organized using 'container' or 'list' constructs. A YANG module can import

definitions from other modules.

By default, a node defines configuration data. A node defines state data if it is tagged as config

false. Configuration data is returned using the NETCONF <get-config> operation, and state data

is returned using the NETCONF <get> operation.

Constraints can be defined on the data nodes, e.g. allowed values. YANG can model both

configuration data and state data using the 'config' statement.

• Constraints can be defined on the data nodes, e.g. allowed values. YANG can model both

configuration data and state data using the 'config' statement.

IoT Systems Management with NETCONF-YANG

This section describes how IoT to manage IoT systems with NETCONG and YANG.

Components and Roles

 Management System

 Management API

 Transaction Manager

 Rollback Manager

 Data Model Manager

 Configuration Validator

 Configuration Database

 Configuration API

 Data Provider API

Management System

The operator uses a Management system to send NETCONF messages to configure the IoT

device and receives state information and notifications from the device as NETCONF messages.

Management API

Management API allows management applications to start NETCONF sessions, read and write

configuration data, read state data, retrieve configuration data and invoke RPC, in the same way

as operators.

Transaction Manager

Transaction Manager executes all the NETCONF transactions and ensures that the ACID

(Atomicity, Consistency, Isolation, Durability properties hold true for the transactions.

Rollback Manager

Rollback manager is responsible for generating all the transactions necessary to roll back a

current configuration to its original state.

Data Model Manager

Data Model Manager keeps tracks of all the YANG data models and the corresponding managed

objects. The Data model manager also keeps track of the applications which provide data for

each part of the data model.

Configuration Validator

Configuration Validator checks if the resulting configuration after applying a transaction would

be valid configuration.

Configuration Database

This database contains both the configuration and operational data.

Configuration API

Using the configuration API the applications on the IoT device can read configuration data from

the configuration datastore and write operational data to the operational datastore.

Data Provider API

Applications on the IoT Devices can register for callbacks for various events using the Data

provide API. Through the Data provide API, the applications can report statistics and operational

data.

IoT Platforms Design Methodology
IoT Design Methodology includes the following steps:

• Purpose & Requirements Specification

• Process Specification

• Domain Model Specification

• Information Model Specification

• Service Specifications

• IoT Level Specification

• Functional View Specification

• Operational View Specification

• Device & Component Integration

• Application Development

Step 1: Purpose & Requirements Specification

The first step in IoT system design methodology is to define the purpose and requirements of the

system. In this step, the system purpose, behavior and requirements (such as data collection

requirements, data analysis requirements, system management requirements, data privacy and

security requirements, user interface requirements, ...) are captured. In this home automation

taken as example

 Purpose : A home automation system that allows controlling of the lights in a home

remotely using a web application.

 Behavior : The home automation system should have auto and manual modes. In auto

mode, the system measures the light level in the room and switches on the light when it

gets dark. In manual mode, the system provides the option of manually and remotely

switching on/off the light.

 System Management Requirement : The system should provide remote monitoring and

control functions.

 Data Analysis Requirement : The system should perform local analysis of the data.

 Application Deployment Requirement : The application should be deployed locally on

the device, but should be accessible remotely.

 Security Requirement : The system should have basic user authentication capability

Step 2: Process Specification

• The second step in the IoT design methodology is to define the process specification. In

this step, the use cases of the IoT system are formally described based on and derived

from the purpose and requirement specifications.

Step 3: Domain Model Specification

• The third step in the IoT design methodology is to define the Domain Model.

• The domain model describes the main concepts, entities and objects in the domain of IoT

system to be designed.

• Domain model defines the attributes of the objects and relationships between objects.

• Domain model provides an abstract representation of the concepts, objects and entities in

the IoT domain, independent of any specific technology or platform. With the domain

model, the IoT system designers can get an understanding of the IoT domain for which

the system is to be designed.

The entities, objects and concepts defined in the domain model include

• Physical Entity

• Virtual Entity

• Device

• Resource

• Service

Step 4: Information Model Specification
• The fourth step in the IoT design methodology is to define the Information Model.

• Information Model defines the structure of all the information in the IoT system, for

example, attributes of Virtual Entities, relations, etc. Information model does not

describe the specifics of how the information is represented or stored.

• To define the information model, we first list the Virtual Entities defined in the Domain

Model.

Information model adds more details to the Virtual Entities by defining their attributes and

relations.

Step 5: Service Specifications

The fifth step in the IoT design methodology is to define the service specifications. Service

specifications define the services in the IoT system, service types, service inputs/output, service

endpoints, service schedules, service preconditions and service effects.

Step 6: IoT Level Specification
• The sixth step in the IoT design methodology is to define the IoT level for the system. In

Chapter-1, we defined five IoT deployment levels

Step 7: Functional View Specification

• The seventh step in the IoT design methodology is to define the Functional View. The

Functional View (FV) defines the functions of the IoT systems grouped into various

Functional Groups (FGs).

• Each Functional Group either provides functionalities for interacting with instances of

concepts defined in the Domain Model or provides information related to these concepts.

Step 8: Operational View Specification
The eighth step in the IoT design methodology is to define the Operational View Specifications.

In this step, various options pertaining to the IoT system deployment and operation are defined,

such as, service hosting options, storage options, device options, application hosting options, etc

Step 9: Device & Component Integration
• The ninth step in the IoT design methodology is the integration of the devices and components.

Step 10: Application Development
• The final step in the IoT design methodology is to develop the IoT application..

IoT Physical Devices & Endpoints
What is an IoT Device

A "Thing" in Internet of Things (IoT) can be any object that has a unique identifier and which

can send/receive data (including user data) over a network (e.g., smart phone, smart TV,

computer, refrigerator, car, etc.).

IoT devices are connected to the Internet and send information about themselves or about their

surroundings (e.g. information sensed by the connected sensors) over a network (to other devices

or servers/storage) or allow actuation upon the physical entities/environment around them

remotely.

IoT Device Examples

• A home automation device that allows remotely monitoring the status of appliances and

controlling the appliances.

• An industrial machine which sends information about its operation and health monitoring data

to a server.

• A car which sends information about its location to a cloud-based service.

• A wireless-enabled wearable device that measures data about a person such as the number of

steps walked and sends the data to a cloud-based service.

Basic building blocks of an IoT Device
• Sensing : Sensors can be either on-board the IoT device or attached to the device.

• Actuation : IoT devices can have various types of actuators attached that allow taking actions

upon the physical entities in the vicinity of the device.

• Communication : Communication modules are responsible for sending collected data to other

devices or cloud-based servers/storage and receiving data from other devices and commands

from remote applications.

• Analysis & Processing : Analysis and processing modules are responsible for making sense of

the collected data.

Block diagram of an IoT Device

Raspberry Pi
• Raspberry Pi is a low-cost mini-computer with the physical size of a credit card.

• Raspberry Pi runs various flavors of Linux and can perform almost all tasks that a normal

desktop computer can do.

• Raspberry Pi also allows interfacing sensors and actuators through the general purpose I/O

pins.

• Since Raspberry Pi runs Linux operating system, it supports Python "out of the box".

Example of Raspberry Pi board

About the Board

Raspberry Pi board includes the following components/peripherals

Processor and RAM

Most of Raspberry Pi based on ARM processor. The latest version of the board is Raspberry Pi

400 was released in November 2020. It comes with Broadcom BCM2711C0 processor to be

clocked at 1.8 GHz, which is slightly higher than the Raspberry Pi 4 Model B which was

released in June 2019 with a 1.5 GHz 64-bit quad core ARM Cortex-A72 processor, on-board

802.11ac Wi-Fi, Bluetooth 5, full gigabit Ethernet (throughput not limited), two USB 2.0 ports,

two USB 3.0 ports, 2-8 GB of RAM, and dual-monitor support via a pair of micro HDMI (HDMI

Type D) ports for up to 4K resolution.

USB Ports

Raspberry Pi comes with two USB 2.0 and two USB 3.0 ports. The USB board on Raspberry Pi

can provide a current upto 100mA. For connecting devices that draw current more than 100mA,

an external USB power hub is required.

Ethernet Ports

Raspberry Pi comes with standard RJ45 ethernet port.

HDMI output

The HDMI port of Raspberry Pi provides both video and audio output. You can connect a

Raspberry Pi to a monitor using a HDMI cable.

Composite Video Output

Raspberry Pi comes with a composite video output with an RCA jack that supports both PAL

and NTSC video output. The RCA jack can be used to connect older television that have an

RCA input only.

Audio output

Raspberry Pi has a 3.5mm audio output jack. This audio jack is used for providing audio output

to old television along with the RCA jack for video.

GPIO Pins

Raspberry Pi comes with a number of general purpose input/output pins. There are four types of

pins – true GPIO pins, I2C interface pins, SPI interface pins, and serial Rx and Tx pins.

Display Serial Interface (DSI)

The DSI interface can be used to connect an LCD panel to Raspberry Pi.

Camera Serial Interface (CSI)

The CSI interface can be used to connect a camera module to Raspberry Pi.

Status LEDs has 5 status LEDs.

SD Card Slot

Raspberry Pi does not have a built in operating system and storage. You can plug in an SD card

loaded with a Linux image to the SD card slot.

Power Output

Raspberry Pi has a micro-USB connector for power output.

Linux on Raspberry Pi

Raspbian

• Raspbian Linux is a Debian Wheezy port optimized for Raspberry Pi.

Arch

• Arch is an Arch Linux port for AMD devices.

Pidora

• Pidora Linux is a Fedora Linux optimized for Raspberry Pi.

RaspBMC

• RaspBMC is an XBMC media-center distribution for Raspberry Pi.

OpenELEC

• OpenELEC is a fast and user-friendly XBMC media-center distribution.

RISC OS

• RISC OS is a very fast and compact operating system.

Raspberry Pi GPIO

Raspberry Pi Interfaces

Serial

• The serial interface on Raspberry Pi has receive (Rx) and transmit (Tx) pins for communication

with serial peripherals.

SPI

• Serial Peripheral Interface (SPI) is a synchronous serial data protocol used for communicating

with one or more peripheral devices. In SPI connection, there is one master device and one or

more peripheral devices. There are five pins on Raspberry Pi for SPI interface.

MISO – (Master In Slave Out) – Master lines for sending data to peripherals

MOSI – (Master Out Slave In) – Slave line for sending data to master.

SCK (Serial Clock) –Clock generated by master to synchronize data transmission

CE0 (Chip Enable 0) – To enable or disable devices

CE0 (Chip Enable 1) – To enable or disable devices

I2C

• The I2C interface pins on Raspberry Pi allow you to connect hardware modules. I2C interface

allows synchronous data transfer with just two pins - SDA (data line) and SCL (clock line).

Programming Raspberry Pi with Python
Raspberry Pi runs on Linux and supports python. Therefore you can run any python program that

runs on normal computer. However GPIO pins on Raspberry Pi that makes it useful device fro

internet of things. You can interface wide variety of sensors and actuators with Raspberry by

using GPIO pins and the SPI, I2C and serial interfaces. Input from the sensors connected to

Raspberry Pi can be processed and various actions can be taken for instance sending data to

server, sending an email, triggering a relay switch.

Controlling LED with Raspberry Pi

In the following example LED is connected to GPIO pin 18. You can connect LED to any other

GPIO as well.

.

The following python program shows blinking an LED connected to Raspberry Pi every second.

The program uses RPi GPIO module to control GPIO module on Raspberry Pi. In this program

we set pin 18 directions to output and then write True/False alternatively after a delay of one

second.

Python Program

import RPi.GPIO as GPIO

import time

LED_PIN = 18

GPIO.setmode(GPIO.BCM)

GPIO.setup(LED_PIN, GPIO.OUT)

While True:

GPIO.output(LED_PIN, GPIO.HIGH)

time.sleep(1)

GPIO.output(LED_PIN, GPIO.LOW)

Time.sleep(1)

GPIO.cleanup()

Interfacing LED and switch with Raspberry Pi

In the below example the LED is connected to GPIO pin 18 and switch is connected to pin 25. In

the infinite while loop the value of pin 25 is checked and the state of LED is Toggled if switch is

pressed. The above example shows how to get input from GPIO pins and processes the input and

take some action. The action in this example is toggling the state of an LED.

Interfacing LED and switch with Raspberry Pi

Python Program

from time import sleep

import RPi.GPIO as GPIO

GPIO.setmode(GPIO.BCM)

#Switch Pin

GPIO.setup(25, GPIO.IN)

#LED Pin

GPIO.setup(18, GPIO.OUT)

state=false

def toggleLED(pin):

state = not state

GPIO.output(pin, state)

while True:

try:

if (GPIO.input(25) == True):

toggleLED(pin)

sleep(.01)

except KeyboardInterrupt:

exit()

Interfacing a Light Sensor (LDR) with Raspberry Pi

Connect one side of LDR to 3.3V and other side to the 1mF capacitor and also to a GPIO pin. An

LED is connected to pin 18 which is controlled based on the light level sensed.

The readLDR function returns a count which is proportional to light level. In this function LDR

pin is set to output and low and then ton input. At this point the capacitor starts charging through

the resistor until the input reads high. The counter is stopped when the input reads high. The final

count is proportional to the light level as greater the amount of light smaller the LDR resistance

and greater is the time taken to charge the capacitor.

Python Program

import RPi.GPIO as GPIO

import time

GPIO.setmode(GPIO.BCM)

ldr_threshold = 1000

LDR_PIN = 18

LIGHT_PIN = 25

def readLDR(PIN):

 reading = 0

 GPIO.setup(LIGHT_PIN, GPIO.OUT)

 GPIO.output(PIN, false)

 time.sleep(0.1)

 GPIO.setup(PIN, GPIO.IN)

 while (GPIO.input (PIN) ==Flase):

 reading=reading+1

 return reading

def switchOnLight(PIN):

 GPIO.setup(PIN, GPIO.OUT)

 GPIO.output(PIN, True)

def switchOffLight(PIN):

 GPIO.setup(PIN, GPIO.OUT)

 GPIO.output(PIN, False)

while True:

 ldr_reading = readLDR(LDR_PIN)

 if ldr_reading < ldr_threshold:

 switchOnLight (LIGHT_PIN)

 else:

 switchOffLight(LIGHT_PIN)

 time.sleep(1)

