Constraint based

T.R.Lekhaa AP/IT

: M ining M ultiple-Level Association Rules

- Items often form hierarchies
- Flexible support settings
- Items at the lower level are expected to have lower support
- Exploration of shared multi-level mining
uniform support

```
Level 1
min_sup \(=\mathbf{5 \%}\)
```

Level 2
min_sup $=\mathbf{5 \%}$

reduced support

Level 1

$$
\text { min_sup }=5 \%
$$

Level 2
min_sup $=\mathbf{3 \%}$

Multi-level Association: Flexible Support and Redundancy filtering
 INSTITITIOM:

- Flexible min-support thresholds: Some items are more valuable but less frequent
- Use non-uniform, group-based min-support
- E.g., \{diamond, watch, camera\}: 0.05\%; \{bread, milk\}: 5\%; ...
- Redundancy Filtering: Some rules may be redundant due to "ancestor" relationships between items
- milk \Rightarrow wheat bread [support $=8 \%$, confidence $=70 \%$]
-2% milk \Rightarrow wheat bread [support $=2 \%$, confidence $=72 \%$]
The first rule is an ancestor of the second rule
- A rule is redundant if its support is close to the "expected" value, based on the rule's ancestor

\%nstraint-Based Frequent Pattern Mining

- Anti-monotonic: If constraint c is violated, its further mining can be terminated
- M onotonic: If c is satisfied, no need to check c again
- Succinct: c must be satisfied, so one can start with the data sets satisfying c
- Convertible: c is not monotonic nor anti-monotonic, but it can be converted into it if items in the transaction can be properly ordered

erestingness M easure: Correlations (Lift)

- play basketball \Rightarrow eat cereal $[40 \%, 66.7 \%]$ is misleading
- The overall \% of students eating cereal is $75 \%>66.7 \%$.
- play basketball \Rightarrow not eat cereal [20\%, 33.3\%] is more accurate, although with lower support and confidence
- Measure of dependent/correlated events: lift

$$
\begin{gathered}
\text { lift }=\frac{P(A \cup B)}{P(A) P(B)} \\
\text { lift }(B, C)=\frac{2000 / 5000}{3000 / 5000 * 3750 / 5000}=0.89 \\
\text { lift }(B, \neg C)=\frac{1000 / 5000}{3000 / 5000 * 1250 / 5000}=1.33
\end{gathered}
$$

	Basketball	Not basketball	Sum (row)
Cereal	2000	1750	3750
Not cereal	1000	250	1250
Sum(col.)	3000	2000	5000

