
Queue ADT

• A queue in C is basically a linear data

structure to store and manipulate the data

elements.

•It follows the order of First In First Out (FIFO).

•In queues, the first element entered into the array

is the first element to be removed from the array.

• Queue is a linear data structure in which

the insertion and deletion operations are

performed at two different ends.

• In a queue data structure, adding and removing

elements are performed at two different positions.

• The insertion is performed at one end and deletion

is performed at another end.

Enqueue() : It inserts an element to the end of the

queue by using Rear pointer.

Dequeue() : Removes the element from the front

of the queue by using front pointer.

• isFull() : To check whether the queue is full or

not.

• isEmpty(): To check whether the queue is

empty or not.

Ways of Implementation:

• Array Implementation

• Linked List Implementation

Array Implementation of Queue ADT

• An array is a linear data structure

• An array is a collection of variables in the same data

type.

• we can’t group different data types in the array. Like,

a combination of integer and char, char and float etc.

• Hence array is called as the homogeneous data type.

• Using index value, we can directly access the

desired element in the array.

Operations of Queue ADT

• Implementation of queue using array starts with

the creation of an array of size n and initialize

two variables FRONT and REAR with -1which

means currently queue is empty.

• The REAR value represents the index up to

which value is stored in the queue and

the FRONT value represents the index of the first

element to be dequeued.

Enqueue

• Insert an element from the rear end into the queue.

• Element is inserted into the queue after checking the
overflow condition n-1==REAR to check whether the
queue is full or not.

• If n-1==REAR then this means the queue is already
full.

• But if REAR < n means that we can store an
element in an array.

• So increment the REAR value by 1 and then insert an
element at the REAR index.

Routine for Enqueue Operation

void enQueue (int value)

{

if (rear == SIZE – 1)

{

printf (“Queue is Full”);

}

else

{

if (front == -1)

front = 0;

}

rear++;

queue [rear] = value;

}

Example:

int arr[7]={10,20,30,40,50,60,70};

0 1 2 3 4 5 6 7

10 20 30 40 50 60 70

Empty Queue

10 20

0

1

Dequeue

• Deleting an element from the FRONT end of the queue. Before
deleting an element we need to check the underflow condition
front == - 1 or front > rear to check whether there is at least one
element available for the deletion or not.

• If front == - 1 or front > rear then no element is available to
delete.

• Else delete FRONT index element and Returns
the FRONT value of queue.

• If REAR==FRONT then we set -1 to
both FRONT AND REAR

• Else we increment FRONT.

Routine for Dequeue Operation:

void deQueue()

{

if (front == -1)

printf (“ Queue is Empty”);

else

{

printf (“ Deleted : %d”, queue [front]);

front ++;

if (front > rear) // only happens when the last element was dequeued

front = rear = -1;

}

}

Display

• It will traverse the queue and print all the elements of the
queue.

• Check whether the queue is not empty or not.

• If empty, display that the queue is empty. we simply
return from the function and not execute further inside
the function.

• Else we will print all elements from FRONT to REAR
by incrementing FRONT pointer.

Routine for Display Operation

void Display ()

{

if (front == -1)

printf (“ Queue is Empty”);

else

{

int i;

printf (“ Queue Elements are:”);

for (i = front; i <= rear; i++)

printf (“%d:, queue[i]);

}

}

Linked List Implementation of Queue

• Implementing a queue using a linked list

allows us to grow the queue as per the

requirements, i.e., memory can be allocated

dynamically.

• A queue implemented using a linked list will

not change its behavior and will continue to

work according to the FIFO principle.

Steps for implementing queue using linked list:

1. Enqueue Function

• Enqueue function adds an element to the end of
the queue. The last element can be tracked using
the rear pointer.

• First, build a new node with given data.

• Check if the queue is empty or not.

• If a queue is empty then, a new node is assigned
to the front and rear.

• Else make next of rear as new node and rear as a
new node.

2. Dequeue Function

• The dequeue function always removes the first
element of the queue. For dequeue, the queue
must contain at least one element, else underflow
conditions will occur.

• Check if queue is empty or not.

• If the queue is empty, then dequeue is not
possible.

• Else store front in temp

• And make next of front as the front.

• Delete temp, i.e., free (temp).

3. Print

• Print function is used to display the content of the

queue. Since we need to iterate over each element

of the queue to print it.

• Check if queue contains at least one element or

not.

• If the queue is empty print “No elements in the

queue.”

• Else, define a node pointer and initialize it with the

front.

• Display data of node pointer until the next node

pointer becomes NULL.

Node Structure

struct node

{

int data;

struct node * next;

};

Enqueue() operation on a queue

void Enqueue (int Element)

{

struct node * newnode;

newnode = (struct node *)malloc (sizeof (struct node));

newnode - > data = Element;

newnode - > next = NULL;

if ((front == NULL) && (rear == NULL))

{

front = rear = newnode;

}

else

{

rear - > next = newnode;

rear = newnode;

}

}

Dequeue() operation on a queue

int dequeue()

{

if (front == NULL)

{

printf("\nUnderflow\n");

return -1;

}

else

{

struct node * temp = front;

int temp_data = front - > data;

front = front - > next;

free(temp);

return temp_data;

}

}

Display all elements of the queue

void display()

{

struct node * temp;

if ((front == NULL) && (rear == NULL))

{

printf("\nQueue is Empty\n");

}

else

{

temp = front;

while (temp)

{

printf ("%d", temp - > data);

temp = temp - > next;

}

}

}

