

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE NAME : 19IT301 COMPUTER ORGANIZATION AND ARCHITECTURE II YEAR /III SEMESTER

Unit 1- Arithmetic Operations

Topic 5 : Integer division

Integer division/Computer organization and architecture/Dr.K.Periyakaruppan/CSE/SNSCE

Manual Division

)100010010

Longhand division examples.

Integer division/Computer organization and architecture/Dr.K.Periyakaruppan/CSE/SNSCE

Longhand Division Steps

Position the divisor appropriately with respect to the dividend and performs a subtraction.

✓ If the remainder is zero or positive, a quotient bit of 1 is determined, the remainder is extended by another bit of the dividend, the divisor is repositioned, and another subtraction is performed. \checkmark If the remainder is negative, a quotient bit of 0 is determined, the dividend is restored by adding back the divisor, and the divisor is repositioned for another subtraction.

Circuit Arrangement

Restoring Division

Shift A and Q left one binary position Subtract M from A, and place the answer back in A If the sign of A is 1, set q_0 to 0 and add M back to A (restore A); otherwise, set q_0 to 1 Repeat these steps *n* times

Examples

1 0 1000 1 1) 1 0

Integer division/Computer organization and architecture/Dr.K.Periyakaruppan/CSE/SNSCE A restoring-division example.

tient

Nonrestoring Division

Avoid the need for restoring A after an unsuccessful subtraction. Any idea? Step 1: (Repeat *n* times) \geq If the sign of A is 0, shift A and Q left one bit position and subtract M from A; otherwise, shift A and Q left and add M to A. \geq Now, if the sign of A is 0, set q_0 to 1; otherwise, set q_0 to 0. Step2: If the sign of A is 1, add M to A

Examples

	Initially	0 () ()	0 1	0 1
	Shift	0 (0	0	1
	Subtract	<u>1</u> ′	1	0	1
	Set q ₀		1	1	0
	Shift	1 1	1	0	0
$Add \underbrace{\begin{array}{c}1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{array}}_{\text{Remainder}} Remainder} Remainder$	Add	0 () ()	1	1
	Set q ₀		1	1	1
	Shift	1 1	1	1	0
	Add	0 () ()	1	1
	Set q ₀	0 (0 0	0	1
	Shift	0 (0 0	1	0
	Subtract	<u>1</u> ·	1	0	1
	Set q ₀		1	1	1

Assessment

a). What is restoring division?b). What is non restoring division?c) Compare restoring division and non restoring division

Reference

1. Carl Hamacher, Zvonko Vranesic and Safwat Zaky, "Computer Organization", McGraw-Hill, 6th Edition 2012.

