
 

ELLIPTIC CURVE CRYPTOGRAPHY 

Elliptical curve cryptography (ECC) is a public key encryption technique based on elliptic 

curve theory that can be used to create faster, smaller and more efficient cryptographic keys. 

ECC is an alternative to the Rivest-Shamir-Adleman (RSA) cryptographic algorithm and is 

most often used for digital signatures in cryptocurrencies, such as Bitcoin and Ethereum, as 

well as one-way encryption of emails, data and software. 

An elliptic curve is not an ellipse, or oval shape, but it is represented as a looping line 

intersecting two axes, which are lines on a graph used to indicate the position of a point. The 

curve is completely symmetric, or mirrored, along the x-axis of the graph. 

Public key cryptography systems, like ECC, use a mathematical process to merge two distinct 

keys and then use the output to encrypt and decrypt data. One is a public key that is known to 

anyone, and the other is a private key that is only known by the sender and receiver of the data. 

ECC generates keys through the properties of an elliptic curve equation instead of the 

traditional method of generation as the product of large prime numbers. From a cryptographic 

perspective, the points along the graph can be formulated using the following equation: 

y²=x³ + ax + b 

ECC is like most other public key encryption methods, such as the RSA algorithm and Diffie-

Hellman. Each of these cryptography mechanisms uses the concept of a one-way, or trapdoor, 

function. This means that a mathematical equation with a public and private key can be used 

to easily get from point A to point B. But, without knowing the private key and depending on 

the key size used, getting from B to A is difficult, if not impossible, to achieve. 

ECC is based on the properties of a set of values for which operations can be performed on any 

two members of the group to produce a third member, which is derived from points where the 

 SNS COLLEGE OF ENGINEERING 
Kurumbapalayam (Po), Coimbatore – 641 107 

 

AN AUTONOMOUS INSTITUTION 
 

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A’ Grade 
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai 

 

https://www.techtarget.com/searchsecurity/definition/public-key
https://www.techtarget.com/searchsecurity/definition/RSA
https://www.techtarget.com/searchsecurity/definition/private-key
https://www.techtarget.com/searchsecurity/definition/Diffie-Hellman-key-exchange
https://www.techtarget.com/searchsecurity/definition/Diffie-Hellman-key-exchange


line intersects the axes as shown with the green line and three blue dots in the below diagram 

labeled A, B and C. Multiplying a point on the curve by a number produces another point on 

the curve (C). Taking point C and bringing it to the mirrored point on the opposite side of the 

x-axis produces point D. From here, a line is drawn back to our original point A, creating an 

intersection at point E. This process can be completed n number of times within a defined max 

value. The n is the private key value, which indicates how many times the equation should be 

run, ending on the final value that is used to encrypt and decrypt data. The maximum defined 

value of the equation relates to the key size used. 

 

The private keys in the ECC are integers (in the range of the curve's field size, typically 256-

bit integers). Example of 256-bit ECC private key (hex encoded, 32 bytes, 64 hex digits) is: 

0x51897b64e85c3f714bba707e867914295a1377a7463a9dae8ea6a8b91424

6319. 

The key generation in the ECC cryptography is as simple as securely generating a random 

integer in certain range, so it is extremely fast. Any number within the range is valid ECC 

private key. 

The public keys in the ECC are EC points - pairs of integer coordinates {x, y}, laying on the 

curve. Due to their special properties, EC points can be compressed to just one coordinate + 

1 bit (odd or even). Thus the compressed public key, corresponding to a 256-bit ECC private 

key, is a 257-bit integer. Example of ECC public key (corresponding to the above private key, 

encoded in the Ethereum format, as hex with prefix 02 or 03) is: 

0x02f54ba86dc1ccb5bed0224d23f01ed87e4a443c47fc690d7797a13d41d2

340e1a. In this format the public key actually takes 33 bytes (66 hex digits), which can be 

optimized to exactly 257 bits. 

Elliptic Curves 

In mathematics elliptic curves are plane algebraic curves, consisting of all points {x, y}, described by 

the equation: 

 

Cryptography uses elliptic curves in a simplified form (Weierstras form), which is defined as: 

 y2 = x3 + _a_x + b 

For example, the NIST curve secp256k1 (used in Bitcoin) is based on an elliptic curve in the form: 

 y2 = x3 + 7 (the above elliptic curve equation, where a = 0 and b = 7) 

http://mathworld.wolfram.com/EllipticCurve.html
https://en.bitcoin.it/wiki/Secp256k1


This is a visualization of the above elliptic curve: 

 

Elliptic Curves over Finite Fields 

The elliptic curve cryptography (ECC) uses elliptic curves over the finite field 𝔽p (where p is 

prime and p > 3) or 𝔽2m (where the fields size p = 2_m_). This means that the field is a square 

matrix of size p x p and the points on the curve are limited to integer coordinates within the field 

only. All algebraic operations within the field (like point addition and multiplication) result in another 

point within the field. The elliptic curve equation over the finite field 𝔽p takes the following modular 

form: 

 y2 ≡ x3 + _a_x + b (mod p) 

Respectively, the "Bitcoin curve" secp256k1 takes the form: 

 y2 ≡ x3 + 7 (mod p) 

https://en.wikipedia.org/wiki/Finite_field


Unlike RSA, which uses for its key space the integers in the range [0...p-1] (the field ℤp), the ECC 

uses the points {x, y} within the Galois field 𝔽p (where x and y are integers in the range [0...p-1]). 

An elliptic curve over the finite field 𝔽p consists of: 

 a set of integer coordinates {x, y}, such that 0 ≤ x, y < p 

 staying on the elliptic curve: _y_2 ≡ x3 + _a_x + b (mod p) 

Example of elliptic curve over the finite field 𝔽17: 

 y2 ≡ x3 + 7 (mod 17) 

This elliptic curve over 𝔽17 looks like this: 

 

 


	Elliptic Curves
	Elliptic Curves over Finite Fields


