

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore – 641 107

AN AUTONOMOUS INSTITUTION

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

ELGAMAL CRYPTOSYSTEM

ElGamal encryption is a public-key cryptosystem. It uses asymmetric key encryption for communicating between two parties and encrypting the message.

This cryptosystem is based on the difficulty of finding **discrete logarithm** in a cyclic group that is even if we know g^a and g^k , it is extremely difficult to compute g^{ak} .

Idea of ElGamal cryptosystem

Suppose Alice wants to communicate with Bob.

- 1. Bob generates public and private keys:
 - Bob chooses a very large number \mathbf{q} and a cyclic group \mathbf{F}_{q} .
 - From the cyclic group \mathbf{F}_q , he choose any element \mathbf{g} and an element \mathbf{a} such that gcd(a, q) = 1.
 - Then he computes $h = g^a$.
 - Bob publishes \mathbf{F} , $\mathbf{h} = \mathbf{g}^{\mathbf{a}}$, \mathbf{q} , and \mathbf{g} as his public key and retains \mathbf{a} as private key.
- 2. Alice encrypts data using Bob's public key :
 - Alice selects an element **k** from cyclic group **F** such that gcd(k, q) = 1.
 - Then she computes $p = g^k$ and $s = h^k = g^{ak}$.
 - She multiples s with M.
 - Then she sends $(p, M^*s) = (g^k, M^*s)$.
- 3. Bob decrypts the message :
 - Bob calculates $s' = p^a = g^{ak}$.
 - He divides M^*s by s' to obtain M as s = s'.

Example: Alice chooses $p_A = 107$, $\alpha_A = 2$, $d_A = 67$, and she computes $\beta_A = 2^{67} \equiv 94 \pmod{107}$. Her public key is $(p_A, \alpha_A, \beta_A) = (2,67,94)$, and her private key is $d_A = 67$.

Bob wants to send the message "B" (66 in ASCII) to Alice. He chooses a random integer k = 45 and encrypts M = 66 as $(r, t) = (\alpha_A^{\ k}, \beta_A^{\ k}M) \equiv (2^{45}, 94^{45}66) \equiv (28, 9) \pmod{107}$. He sends the encrypted message (28, 9) to Alice.

Alice receives the message (r, t) = (28, 9), and using her private key $d_A = 67$ she decrypts to

 $tr^{-d_{\rm A}} = 9 \cdot 28^{-67} \equiv 9 \cdot 28^{106-67} \equiv 9 \cdot 43 \equiv 66 \pmod{107}.$