The Chinese Remainder Theorem

Chinese Remainder Theorem: If $m_1, m_2, ..., m_k$ are <u>pairwise relatively</u> <u>prime</u> positive integers, and if $a_1, a_2, ..., a_k$ are any integers, then the simultaneous congruences

 $x \equiv a_1 \pmod{m_1}, \quad x \equiv a_2 \pmod{m_2}, \quad \dots, \quad x \equiv a_k \pmod{m_k}$ have a solution, and the solution is unique modulo *m*, where $m = m_1 m_2 \cdots m_k$.

Proof that a solution exists: To keep the notation simpler, we will assume k = 4. Note the proof is <u>constructive</u>, i.e., it shows us how to actually construct a solution.

Our simultaneous congruences are

 $x \equiv a_1 \pmod{m_1}, x \equiv a_2 \pmod{m_2}, x \equiv a_3 \pmod{m_3}, x \equiv a_4 \pmod{m_4}.$

Our goal is to find integers w_1 , w_2 , w_3 , w_4 such that:

\searrow	value mod <i>m</i> 1	value mod <i>m</i> ₂	value mod <i>m</i> 3	value mod <i>m</i> 4
<i>w</i> ₁	1	0	0	0
<i>w</i> ₂	0	1	0	0
<i>w</i> ₃	0	0	1	0
<i>w</i> ₄	0	0	0	1

Once we have found w_1 , w_2 , w_3 , w_4 , it is easy to construct x:

 $x = a_1 w_1 + a_2 w_2 + a_3 w_3 + a_4 w_4.$

Moreover, as long as the moduli (m_1, m_2, m_3, m_4) remain the same, we can use the same w_1, w_2, w_3, w_4 with any a_1, a_2, a_3, a_4 .

First define: $z_1 = m / m_1 = m_2 m_3 m_4$ $z_2 = m / m_2 = m_1 m_3 m_4$ $z_3 = m / m_3 = m_1 m_2 m_4$ $z_4 = m / m_4 = m_1 m_2 m_3$

Note that

i) $z_1 \equiv 0 \pmod{m_j}$ for j = 2, 3, 4. ii) $gcd(z_1, m_1) = 1$. (If a prime *p* dividing m_1 also divides $z_1 = m_2 m_3 m_4$, then *p* divides m_2, m_3 , or m_4 .)

and likewise for z_2, z_3, z_4 .

Next define:
$$y_1 \equiv z_1^{-1} \pmod{m_1}$$

 $y_2 \equiv z_2^{-1} \pmod{m_2}$
 $y_3 \equiv z_3^{-1} \pmod{m_3}$
 $y_4 \equiv z_4^{-1} \pmod{m_4}$

The inverses exist by (ii) above, and we can find them by Euclid's extended algorithm. Note that

iii)
$$y_1 z_1 \equiv 0 \pmod{m_j}$$
 for $j = 2, 3, 4$. (Recall $z_1 \equiv 0 \pmod{m_j}$)
iv) $y_1 z_1 \equiv 1 \pmod{m_1}$

and likewise for y_2z_2 , y_3z_3 , y_4z_4 .

Lastly define: $w_1 \equiv y_1 z_1 \pmod{m}$ $w_2 \equiv y_2 z_2 \pmod{m}$ $w_3 \equiv y_3 z_3 \pmod{m}$ $w_4 \equiv y_4 z_4 \pmod{m}$

Then w_1 , w_2 , w_3 , and w_4 have the properties in the table on the previous page.

Example: Solve the simultaneous congruences

 $x \equiv 6 \pmod{11}$, $x \equiv 13 \pmod{16}$, $x \equiv 9 \pmod{21}$, $x \equiv 19 \pmod{25}$.

Solution: Since 11, 16, 21, and 25 are pairwise relatively prime, the Chinese Remainder Theorem tells us that there is a unique solution modulo *m*, where $m = 11 \cdot 16 \cdot 21 \cdot 25 = 92400$.

We apply the technique of the Chinese Remainder Theorem with

k = 4, $m_1 = 11$, $m_2 = 16$, $m_3 = 21$, $m_4 = 25$, $a_1 = 6$, $a_2 = 13$, $a_3 = 9$, $a_4 = 19$, to obtain the solution

to obtain the solution

We compute

 $z_{1} = m / m_{1} = m_{2}m_{3}m_{4} = 16 \cdot 21 \cdot 25 = 8400$ $z_{2} = m / m_{2} = m_{1}m_{3}m_{4} = 11 \cdot 21 \cdot 25 = 5775$ $z_{3} = m / m_{3} = m_{1}m_{2}m_{4} = 11 \cdot 16 \cdot 25 = 4400$ $z_{4} = m / m_{4} = m_{1}m_{3}m_{3} = 11 \cdot 16 \cdot 21 = 3696$ $y_{1} \equiv z_{1}^{-1} \pmod{m_{1}} \equiv 8400^{-1} \pmod{11} \equiv 7^{-1} \pmod{11} \equiv 8 \pmod{11}$ $y_{2} \equiv z_{2}^{-1} \pmod{m_{2}} \equiv 5775^{-1} \pmod{16} \equiv 15^{-1} \pmod{16} \equiv 15 \pmod{16}$ $y_{3} \equiv z_{3}^{-1} \pmod{m_{3}} \equiv 4400^{-1} \pmod{21} \equiv 11^{-1} \pmod{21} \equiv 2 \pmod{21}$ $y_{4} \equiv z_{4}^{-1} \pmod{m_{4}} \equiv 3696^{-1} \pmod{25} \equiv 21^{-1} \pmod{25} \equiv 6 \pmod{25}$ $w_{1} \equiv y_{1}z_{1} \pmod{m} \equiv 8 \cdot 8400 \pmod{92400} \equiv 67200 \pmod{92400}$ $w_{2} \equiv y_{2}z_{2} \pmod{m} \equiv 15 \cdot 5775 \pmod{92400} \equiv 86625 \pmod{92400}$ $w_{3} \equiv y_{3}z_{3} \pmod{m} \equiv 2 \cdot 4400 \pmod{92400} \equiv 8800 \pmod{92400}$ $w_{4} \equiv y_{4}z_{4} \pmod{m} \equiv 6 \cdot 3696 \pmod{92400} \equiv 22176 \pmod{92400}$

The solution, which is unique modulo 92400, is

 $x \equiv a_1 w_1 + a_2 w_2 + a_3 w_3 + a_4 w_4 \pmod{92400}$ = 6 \cdot 67200 + 13 \cdot 86625 + 9 \cdot 8800 + 19 \cdot 22176 (mod 92400) = 2029869 (mod 92400) = 51669 (mod 92400) *Example:* Find all solutions of $x^2 \equiv 1 \pmod{144}$.

Solution: $144 = 16 \cdot 9 = 2^4 3^2$, and gcd(16,9) = 1.

We can replace our congruence by two simultaneous congruences:

 $x^2 \equiv 1 \pmod{16}$ and $x^2 \equiv 1 \pmod{9}$

 $x^2 \equiv 1 \pmod{16}$ has 4 solutions: $x \equiv \pm 1 \text{ or } \pm 7 \pmod{16}$ $x^2 \equiv 1 \pmod{9}$ has 2 solutions: $x \equiv \pm 1 \pmod{9}$

There are 8 alternatives: i) $x \equiv 1 \pmod{16}$ and $x \equiv 1 \pmod{9}$ ii) $x \equiv 1 \pmod{16}$ and $x \equiv -1 \pmod{9}$ iii) $x \equiv -1 \pmod{16}$ and $x \equiv -1 \pmod{9}$ iv) $x \equiv -1 \pmod{16}$ and $x \equiv -1 \pmod{9}$ v) $x \equiv 7 \pmod{16}$ and $x \equiv 1 \pmod{9}$ vi) $x \equiv 7 \pmod{16}$ and $x \equiv -1 \pmod{9}$ vi) $x \equiv -7 \pmod{16}$ and $x \equiv 1 \pmod{9}$ vii) $x \equiv -7 \pmod{16}$ and $x \equiv -1 \pmod{9}$ viii) $x \equiv -7 \pmod{16}$ and $x \equiv -1 \pmod{9}$

By the Chinese Remainder Theorem with k = 2, $m_1 = 16$ and $m_2 = 9$, each case above has a unique solution for *x* modulo 144.

We compute:
$$z_1 = m_2 = 9$$
, $z_2 = m_1 = 16$,
 $y_1 \equiv 9^{-1} \equiv 9 \pmod{16}$, $y_2 \equiv 16^{-1} \equiv 4 \pmod{9}$,
 $w_1 \equiv 9 \cdot 9 = 81 \pmod{144}$, $w_2 \equiv 16 \cdot 4 \equiv 64 \pmod{144}$.

The 8 solutions are:

i) $x \equiv 1 \cdot 81 + 1 \cdot 64 \equiv 145 \equiv 1 \pmod{144}$ ii) $x \equiv 1 \cdot 81 + (-1) \cdot 64 \equiv 17 \equiv 17 \pmod{144}$ iii) $x \equiv (-1) \cdot 81 + 1 \cdot 64 \equiv -17 \equiv -17 \pmod{144}$ iv) $x \equiv (-1) \cdot 81 + (-1) \cdot 64 \equiv -145 \equiv -1 \pmod{144}$ v) $x \equiv 7 \cdot 81 + 1 \cdot 64 \equiv 631 \equiv 55 \pmod{144}$ vi) $x \equiv 7 \cdot 81 + (-1) \cdot 64 \equiv 503 \equiv 71 \pmod{144}$ vii) $x \equiv (-7) \cdot 81 + 1 \cdot 64 \equiv -503 \equiv -71 \pmod{144}$ viii) $x \equiv (-7) \cdot 81 + (-1) \cdot 64 \equiv -603 \equiv -55 \pmod{144}$