
The Chinese Remainder Theorem 
 
 

Chinese Remainder Theorem:   If m1, m2, .., mk are pairwise relatively 
prime positive integers, and if a1, a2, .., ak are any integers, then the 
simultaneous congruences  

            x ≡ a1 (mod m1),    x ≡ a2 (mod m2),   ...,   x ≡ ak (mod mk) 

have a solution, and the solution is unique modulo m, where 
m = m1m2⋅⋅⋅mk .  

 
 
Proof that a solution exists:  To keep the notation simpler, we will 
assume k = 4.   Note the proof is constructive, i.e., it shows us how to 
actually construct a solution.   
 

Our simultaneous congruences are 

    x ≡ a1 (mod m1),   x ≡ a2 (mod m2),   x ≡ a3 (mod m3),  x ≡ a4 (mod m4). 

Our goal is to find integers w1, w2, w3, w4 such that: 

 
value 

mod m1 
value 

mod m2 
value 

mod m3 
value 

mod m4

w1 1 0 0 0 

w2 0 1 0 0 

w3 0 0 1 0 

w4 0 0 0 1 

Once we have found w1, w2, w3, w4, it is easy to construct x:   

    x = a1w1 + a2w2 + a3w3 + a4w4.   

Moreover, as long as the moduli (m1, m2, m3, m4) remain the same, we 
can use the same w1, w2, w3, w4 with any a1, a2, a3, a4.   

 
First define:  z1 = m / m1 = m2m3m4 
            z2 = m / m2 = m1m3m4 

            z3 = m / m3 = m1m2m4 

             z4 = m / m4 = m1m2m3 

Note that  

    i)   z1 ≡ 0 (mod mj)  for j = 2, 3, 4. 

ii) gcd(z1, m1) = 1. (If a prime p dividing m1 also divides 
z1= m2m3m4, then p divides m2, m3, or m4.) 

and likewise for z2, z3, z4.   

Next define:  y1 ≡ z1
–1 (mod m1) 

            y2 ≡ z2
–1 (mod m2) 

            y3 ≡ z3
–1 (mod m3) 

            y4 ≡ z4
–1 (mod m4) 

The inverses exist by (ii) above, and we can find them by Euclid’s 
extended algorithm.  Note that 

    iii)  y1z1 ≡ 0 (mod mj)  for j = 2, 3, 4.    (Recall z1 ≡ 0 (mod mj) ) 
    iv)  y1z1 ≡ 1 (mod m1) 

and likewise for y2z2,  y3z3,  y4z4. 
 

Lastly define:  w1 ≡ y1z1 (mod m) 
             w2 ≡ y2z2 (mod m) 
             w3 ≡ y3z3 (mod m) 
             w4 ≡ y4z4 (mod m) 

Then w1, w2, w3, and w4 have the properties in the table on the 
previous page. 



Example:  Solve the simultaneous congruences 

   x ≡ 6 (mod 11),    x ≡ 13 (mod 16),    x ≡ 9 (mod 21),    x  ≡ 19 (mod 25). 

Solution:  Since 11, 16, 21, and 25 are pairwise relatively prime, the 
Chinese Remainder Theorem tells us that there is a unique solution 
modulo m, where m = 11⋅16⋅21⋅25 = 92400.   

We apply the technique of the Chinese Remainder Theorem with 

   k = 4,   m1 = 11,   m2 = 16,   m3 = 21,   m4 = 25,    
              a1 =   6,    a2 = 13,    a3 = 9,      a4 = 19, 
to obtain the solution. 

We compute 
z1 = m / m1 = m2m3m4 = 16 ⋅21 ⋅25 = 8400  
z2 = m / m2 = m1m3m4 = 11 ⋅21 ⋅25 = 5775 
z3 = m / m3 = m1m2m4 = 11 ⋅16 ⋅25 = 4400 
z4 = m / m4 = m1m3m3 = 11 ⋅16 ⋅21 = 3696 

y1 ≡ z1
–1 (mod m1) ≡ 8400–1 (mod 11) ≡   7–1 (mod 11) ≡   8 (mod 11)  

y2 ≡ z2
–1 (mod m2) ≡ 5775–1 (mod 16) ≡ 15–1 (mod 16) ≡ 15 (mod 16)   

y3 ≡ z3
–1 (mod m3) ≡ 4400–1 (mod 21) ≡ 11–1 (mod 21) ≡   2 (mod 21)   

y4 ≡ z4
–1 (mod m4) ≡ 3696–1 (mod 25) ≡ 21–1 (mod 25) ≡   6 (mod 25) 

w1 ≡ y1z1 (mod m) ≡ 8⋅8400   (mod 92400) ≡ 67200 (mod 92400)  
w2 ≡ y2z2 (mod m) ≡ 15⋅5775 (mod 92400) ≡ 86625 (mod 92400) 
w3 ≡ y3z3 (mod m) ≡ 2⋅4400   (mod 92400) ≡   8800 (mod 92400) 
w4 ≡ y4z4 (mod m) ≡ 6⋅3696   (mod 92400) ≡ 22176 (mod 92400) 

The solution, which is unique modulo 92400, is  

 x ≡ a1w1 + a2w2 + a3w3 + a4w4 (mod 92400)   
  ≡ 6 ⋅67200 + 13 ⋅86625 + 9 ⋅8800 + 19 ⋅22176 (mod 92400) 
  ≡ 2029869 (mod 92400) 
  ≡ 51669  (mod 92400) 

Example:  Find all solutions of  x2 ≡ 1 (mod 144). 

Solution:  144 = 16 ⋅9 = 24 32,  and  gcd(16,9) = 1.   

We can replace our congruence by two simultaneous congruences: 

        x2 ≡ 1 (mod 16)   and   x2 ≡ 1 (mod 9)   

x2 ≡ 1 (mod 16)  has 4 solutions:   x ≡ ±1 or ±7 (mod 16) 

x2 ≡ 1 (mod 9)    has 2 solutions:    x ≡ ±1 (mod 9) 

There are 8 alternatives:  i)  x ≡ 1   (mod 16)   and   x ≡ 1   (mod 9) 
                    ii)  x ≡ 1   (mod 16)   and   x ≡ –1 (mod 9) 
                    iii)  x ≡ –1 (mod 16)   and   x ≡ 1   (mod 9) 
                    iv)  x ≡ –1 (mod 16)   and   x ≡ –1 (mod 9)      
                     v)  x ≡ 7   (mod 16)   and   x ≡ 1   (mod 9) 
                    vi)  x ≡ 7   (mod 16)   and   x ≡ –1 (mod 9) 
                   vii)  x ≡ –7 (mod 16)   and   x ≡ 1   (mod 9) 
                   viii)  x ≡ –7 (mod 16)   and   x ≡ –1 (mod 9) 

By the Chinese Remainder Theorem with k = 2, m1 = 16 and m2 = 9, each 
case above has a unique solution for x modulo 144. 

We compute:  z1 = m2 = 9,                 z2 = m1 = 16, 
            y1 ≡ 9–1 ≡ 9  (mod 16),       y2 ≡ 16–1  ≡ 4 (mod 9), 
            w1 ≡ 9 ⋅9  = 81  (mod 144),   w2 ≡ 16 ⋅4 ≡ 64  (mod 144).  

The 8 solutions are: 
 i)   x ≡ 1 ⋅81 + 1 ⋅64           ≡     145  ≡       1  (mod 144)   
 ii)   x ≡ 1 ⋅81 + (–1) ⋅64     ≡       17   ≡     17  (mod 144) 
 iii)  x ≡ (–1) ⋅81 + 1 ⋅64     ≡     –17   ≡   –17  (mod 144) 
 iv)   x ≡ (–1) ⋅81 + (–1) ⋅64 ≡   –145   ≡     –1  (mod 144) 
 v)   x ≡ 7 ⋅81 + 1 ⋅64           ≡     631   ≡     55  (mod 144)  
 vi)  x ≡ 7 ⋅81 + (–1) ⋅64     ≡     503   ≡     71  (mod 144) 
 vii)  x ≡ (–7) ⋅81 + 1 ⋅64      ≡   –503   ≡   –71  (mod 144) 
 viii)  x ≡ (–7) ⋅81 + (–1) ⋅64  ≡   –603  ≡   –55  (mod 144) 


