The Chinese Remainder Theorem

Chinese Remainder Theorem: If $m_{1}, m_{2}, . ., m_{k}$ are pairwise relatively prime positive integers, and if $a_{1}, a_{2}, . ., a_{k}$ are any integers, then the simultaneous congruences

$$
x \equiv a_{1}\left(\bmod m_{1}\right), \quad x \equiv a_{2}\left(\bmod m_{2}\right), \quad \ldots, \quad x \equiv a_{k}\left(\bmod m_{k}\right)
$$

have a solution, and the solution is unique modulo m, where $m=m_{1} m_{2} \cdots m_{k}$.

Proof that a solution exists: To keep the notation simpler, we will assume $k=4$. Note the proof is constructive, i.e., it shows us how to actually construct a solution.

Our simultaneous congruences are

$$
x \equiv a_{1}\left(\bmod m_{1}\right), \quad x \equiv a_{2}\left(\bmod m_{2}\right), \quad x \equiv a_{3}\left(\bmod m_{3}\right), x \equiv a_{4}\left(\bmod m_{4}\right) .
$$

Our goal is to find integers $w_{1}, w_{2}, w_{3}, w_{4}$ such that:

	value $\bmod \boldsymbol{m}_{\mathbf{1}}$	value $\bmod \boldsymbol{m}_{\mathbf{2}}$	value $\bmod \boldsymbol{m}_{\mathbf{3}}$	value $\bmod \boldsymbol{m}_{\mathbf{4}}$
$\boldsymbol{w}_{\mathbf{1}}$	1	0	0	0
$\boldsymbol{w}_{\mathbf{2}}$	0	1	0	0
$\boldsymbol{w}_{\mathbf{3}}$	0	0	1	0
$\boldsymbol{w}_{\mathbf{4}}$	0	0	0	1

Once we have found $w_{1}, w_{2}, w_{3}, w_{4}$, it is easy to construct x :

$$
x=a_{1} w_{1}+a_{2} w_{2}+a_{3} w_{3}+a_{4} w_{4} .
$$

Moreover, as long as the moduli $\left(m_{1}, m_{2}, m_{3}, m_{4}\right)$ remain the same, we can use the same $w_{1}, w_{2}, w_{3}, w_{4}$ with any $a_{1}, a_{2}, a_{3}, a_{4}$.

First define: $\quad z_{1}=m / m_{1}=m_{2} m_{3} m_{4}$

$$
z_{2}=m / m_{2}=m_{1} m_{3} m_{4}
$$

$$
z_{3}=m / m_{3}=m_{1} m_{2} m_{4}
$$

$$
z_{4}=m / m_{4}=m_{1} m_{2} m_{3}
$$

Note that
i) $\quad z_{1} \equiv 0\left(\bmod m_{j}\right)$ for $j=2,3,4$.
ii) $\operatorname{gcd}\left(z_{1}, m_{1}\right)=1$. (If a prime p dividing m_{1} also divides $z_{1}=m_{2} m_{3} m_{4}$, then p divides m_{2}, m_{3}, or m_{4}.)
and likewise for z_{2}, z_{3}, z_{4}.

Next define: $y_{1} \equiv z_{1}^{-1}\left(\bmod m_{1}\right)$

$$
\begin{aligned}
& y_{2} \equiv z_{2}^{-1}\left(\bmod m_{2}\right) \\
& y_{3} \equiv z_{3}^{-1}\left(\bmod m_{3}\right) \\
& y_{4} \equiv z_{4}^{-1}\left(\bmod m_{4}\right)
\end{aligned}
$$

The inverses exist by (ii) above, and we can find them by Euclid's extended algorithm. Note that
iii) $y_{1} z_{1} \equiv 0\left(\bmod m_{j}\right)$ for $j=2,3,4 . \quad\left(\operatorname{Recall} z_{1} \equiv 0\left(\bmod m_{j}\right)\right)$
iv) $y_{1} z_{1} \equiv 1\left(\bmod m_{1}\right)$
and likewise for $y_{2} z_{2}, y_{3} z_{3}, y_{4} z_{4}$.

Lastly define: $w_{1} \equiv y_{1} z_{1}(\bmod m)$

$$
\begin{aligned}
& w_{2} \equiv y_{2} z_{2}(\bmod m) \\
& w_{3} \equiv y_{3} z_{3}(\bmod m) \\
& w_{4} \equiv y_{4} z_{4}(\bmod m)
\end{aligned}
$$

Then w_{1}, w_{2}, w_{3}, and w_{4} have the properties in the table on the previous page.

Example: Solve the simultaneous congruences

```
x\equiv6(mod 11), x\equiv13 (mod 16), x\equiv9 (mod 21), x 
```

Solution: Since $11,16,21$, and 25 are pairwise relatively prime, the Chinese Remainder Theorem tells us that there is a unique solution modulo m, where $m=11 \cdot 16 \cdot 21 \cdot 25=92400$.

We apply the technique of the Chinese Remainder Theorem with

$$
\begin{array}{llll}
k=4, & m_{1}=11, & m_{2}=16, & m_{3}=21, \\
a_{1}=6, & m_{4}=25, \\
& a_{2}=13, & a_{3}=9, & a_{4}=19,
\end{array}
$$

to obtain the solution.

We compute

$$
\begin{aligned}
& z_{1}=m / m_{1}=m_{2} m_{3} m_{4}=16 \cdot 21 \cdot 25=8400 \\
& z_{2}=m / m_{2}=m_{1} m_{3} m_{4}=11 \cdot 21 \cdot 25=5775 \\
& z_{3}=m / m_{3}=m_{1} m_{2} m_{4}=11 \cdot 16 \cdot 25=4400 \\
& z_{4}=m / m_{4}=m_{1} m_{3} m_{3}=11 \cdot 16 \cdot 21=3696 \\
& y_{1} \equiv z_{1}^{-1}\left(\bmod m_{1}\right) \equiv 8400^{-1}(\bmod 11) \equiv 7^{-1}(\bmod 11) \equiv 8(\bmod 11) \\
& y_{2} \equiv z_{2}^{-1}\left(\bmod m_{2}\right) \equiv 5775^{-1}(\bmod 16) \equiv 15^{-1}(\bmod 16) \equiv 15(\bmod 16) \\
& y_{3} \equiv z_{3}^{-1}\left(\bmod m_{3}\right) \equiv 4400^{-1}(\bmod 21) \equiv 11^{-1}(\bmod 21) \equiv 2(\bmod 21) \\
& y_{4} \equiv z_{4}^{-1}\left(\bmod m_{4}\right) \equiv 3696^{-1}(\bmod 25) \equiv 21^{-1}(\bmod 25) \equiv 6(\bmod 25) \\
& w_{1} \equiv y_{1} z_{1}(\bmod m) \equiv 8 \cdot 8400(\bmod 92400) \equiv 67200(\bmod 92400) \\
& w_{2} \equiv y_{2} z_{2}(\bmod m) \equiv 15 \cdot 5775(\bmod 92400) \equiv 86625(\bmod 92400) \\
& w_{3} \equiv y_{3} z_{3}(\bmod m) \equiv 2 \cdot 4400(\bmod 92400) \equiv 8800(\bmod 92400) \\
& w_{4} \equiv y_{4} z_{4}(\bmod m) \equiv 6 \cdot 3696(\bmod 92400) \equiv 22176(\bmod 92400)
\end{aligned}
$$

The solution, which is unique modulo 92400 , is

$$
\begin{aligned}
x & \equiv a_{1} w_{1}+a_{2} w_{2}+a_{3} w_{3}+a_{4} w_{4}(\bmod 92400) \\
& \equiv 6 \cdot 67200+13 \cdot 86625+9 \cdot 8800+19 \cdot 22176(\bmod 92400) \\
& \equiv 2029869(\bmod 92400) \\
& \equiv \mathbf{5 1 6 6 9}(\bmod 92400)
\end{aligned}
$$

Example: Find all solutions of $\boldsymbol{x}^{2} \equiv \mathbf{1}(\bmod 144)$.
Solution: $144=16 \cdot 9=2^{4} 3^{2}$, and $\operatorname{gcd}(16,9)=1$.
We can replace our congruence by two simultaneous congruences:

$$
x^{2} \equiv 1(\bmod 16) \text { and } x^{2} \equiv 1(\bmod 9)
$$

$x^{2} \equiv 1(\bmod 16)$ has 4 solutions: $x \equiv \pm 1$ or $\pm 7(\bmod 16)$
$x^{2} \equiv 1(\bmod 9) \quad$ has 2 solutions: $x \equiv \pm 1(\bmod 9)$
There are 8 alternatives: i) $x \equiv 1(\bmod 16)$ and $x \equiv 1(\bmod 9)$
ii) $x \equiv 1(\bmod 16)$ and $x \equiv-1(\bmod 9)$
iii) $x \equiv-1(\bmod 16)$ and $x \equiv 1(\bmod 9)$
iv) $x \equiv-1(\bmod 16)$ and $x \equiv-1(\bmod 9)$
v) $x \equiv 7(\bmod 16)$ and $x \equiv 1(\bmod 9)$
vi) $x \equiv 7(\bmod 16)$ and $x \equiv-1(\bmod 9)$
vii) $x \equiv-7(\bmod 16)$ and $x \equiv 1(\bmod 9)$
viii) $x \equiv-7(\bmod 16)$ and $x \equiv-1(\bmod 9)$

By the Chinese Remainder Theorem with $k=2, m_{1}=16$ and $m_{2}=9$, each case above has a unique solution for x modulo 144 .

We compute: $z_{1}=m_{2}=9, \quad z_{2}=m_{1}=16$,

$$
\begin{array}{ll}
y_{1} \equiv 9^{-1} \equiv 9(\bmod 16), & y_{2} \equiv 16^{-1} \equiv 4(\bmod 9), \\
w_{1} \equiv 9 \cdot 9=81(\bmod 144), & w_{2} \equiv 16 \cdot 4 \equiv 64(\bmod 144) .
\end{array}
$$

The 8 solutions are

