

CHINESE REMAINDER THEOREM

We are given two arrays num[0..k-1] and rem[0..k-1]. In num[0..k-1], every pair is coprime

(gcd for every pair is 1). We need to find minimum positive number x such that:

 x % num[0] = rem[0],

 x % num[1] = rem[1],

 x % num[k-1] = rem[k-1]

Basically, we are given k numbers which are pairwise coprime, and given remainders of these

numbers when an unknown number x is divided by them. We need to find the minimum

possible value of x that produces given remainders.

Examples :

Input: num[] = {5, 7}, rem[] = {1, 3}

Output: 31

Explanation:

31 is the smallest number such that:

 (1) When we divide it by 5, we get remainder 1.

 (2) When we divide it by 7, we get remainder 3.

Input: num[] = {3, 4, 5}, rem[] = {2, 3, 1}

Output: 11

Explanation:

11 is the smallest number such that:

 (1) When we divide it by 3, we get remainder 2.

 (2) When we divide it by 4, we get remainder 3.

 (3) When we divide it by 5, we get remainder 1.

Chinese Remainder Theorem states that there always exists an x that satisfies given

congruences.

Let num[0], num[1], …num[k-1] be positive integers that are pairwise coprime. Then, for

any given sequence of integers rem[0], rem[1], … rem[k-1], there exists an integer x

solving the following system of simultaneous congruences.

 SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore – 641 107

AN AUTONOMOUS INSTITUTION

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

The first part is clear that there exists an x. The second part basically states that all solutions

(including the minimum one) produce the same remainder when divided by-product of

num[0], num[1], .. num[k-1]. In the above example, the product is 3*4*5 = 60. And 11 is one

solution, other solutions are 71, 131, .. etc. All these solutions produce the same remainder

when divided by 60, i.e., they are of form 11 + m*60 where m >= 0.

A Naive Approach to find x is to start with 1 and one by one increment it and check if

dividing it with given elements in num[] produces corresponding remainders in rem[]. Once

we find such an x, we return it.

Below is the implementation of Naive Approach.

