SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore - 641107

AN AUTONOMOUS INSTITUTION

Accredited by NBA - AICTE and Accredited by NAAC - UGC with 'A' Grade Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai

CHINESE REMAINDER THEOREM

We are given two arrays num[0..k-1] and rem[0..k-1]. In num[0..k-1], every pair is coprime (gcd for every pair is 1). We need to find minimum positive number x such that:

```
x % num[0] = rem[0],
x % num[1] = rem[1],
```

```
x % num[k-1] = rem[k-1]
```

Basically, we are given k numbers which are pairwise coprime, and given remainders of these numbers when an unknown number x is divided by them. We need to find the minimum possible value of x that produces given remainders. Examples

Input: num []$=\{5,7\}$, rem []$=\{1,3\}$
Output: 31
Explanation:
31 is the smallest number such that:
(1) When we divide it by 5 , we get remainder 1 .
(2) When we divide it by 7 , we get remainder 3 .

Input: num[] $=\{3,4,5\}$, rem[] $=\{2,3,1\}$
Output: 11
Explanation:
11 is the smallest number such that:
(1) When we divide it by 3 , we get remainder 2 .
(2) When we divide it by 4 , we get remainder 3 .
(3) When we divide it by 5 , we get remainder 1 .

Chinese Remainder Theorem states that there always exists an x that satisfies given congruences.
Let num[0], num[1], ...num[k-1] be positive integers that are pairwise coprime. Then, for any given sequence of integers rem[0], rem[1], \ldots rem[k-1], there exists an integer x solving the following system of simultaneous congruences.

$$
\left\{\begin{array}{rlrl}
x & \equiv \operatorname{rem}[0] & & (\bmod \operatorname{num}[0]) \\
& \cdots & & \\
x & \equiv \operatorname{rem}[k-1] & (\bmod \operatorname{num}[k-1])
\end{array}\right.
$$

Furthermore, all solutions x of this system are congruent modulo the product, prod = num[0] * num[1] * ... * nun[k-1]. Hence
$x \equiv y(\bmod \operatorname{num}[i]), \quad 0 \leq i \leq k-1 \quad \Longleftrightarrow \quad x \equiv y(\bmod$ prod $)$.
The first part is clear that there exists an x . The second part basically states that all solutions (including the minimum one) produce the same remainder when divided by-product of num[0], num[1],.. num[k-1]. In the above example, the product is $3 * 4 * 5=60$. And 11 is one solution, other solutions are 71,131 ,.. etc. All these solutions produce the same remainder when divided by 60 , i.e., they are of form $11+\mathrm{m}^{*} 60$ where $\mathrm{m}>=0$. A Naive Approach to find \mathbf{x} is to start with 1 and one by one increment it and check if dividing it with given elements in num[] produces corresponding remainders in rem[]. Once we find such an x, we return it. Below is the implementation of Naive Approach.

Example 5. Use the Chinese Remainder Theorem to find an x such that

$$
\begin{array}{r}
x \equiv 2(\bmod 5) \\
x \equiv 3(\bmod 7) \\
x \equiv 10(\bmod 11)
\end{array}
$$

Solution. Set $N=5 \times 7 \times 11=385$. Following the notation of the theorem, we have $m_{1}=$ $N / 5=77, m_{2}=N / 7=55$, and $m_{3}=N / 11=35$.
We now seek a multiplicative inverse for each m_{i} modulo n_{i}. First: $m_{1} \equiv 77 \equiv 2(\bmod 5)$, and hence an inverse to $m_{1} \bmod n_{1}$ is $y_{1}=3$.
Second: $m_{2} \equiv 55 \equiv 6(\bmod 7)$, and hence an inverse to $m_{2} \bmod n_{2}$ is $y_{2}=6$.
Third: $m_{3} \equiv 35 \equiv 2(\bmod 11)$, and hence an inverse to $m_{3} \bmod n_{3}$ is $y_{3}=6$.
Therefore, the theorem states that a solution takes the form:

$$
x=y_{1} b_{1} m_{1}+y_{2} b_{2} m_{2}+y_{3} b_{3} m_{3}=3 \times 2 \times 77+6 \times 3 \times 55+6 \times 10 \times 35=3552 .
$$

Since we may take the solution modulo $N=385$, we can reduce this to 87 , since $2852 \equiv$ $87(\bmod 385)$.

Example 6. Find all solutions x, if they exist, to the system of equivalences:

$$
\begin{array}{r}
2 x \equiv 6(\bmod 14) \\
3 x \equiv 9(\bmod 15) \\
5 x \equiv 20(\bmod 60)
\end{array}
$$

Solution. As in Example 2, we first wish to reduce this, where possible, using the strategy outlined following the statement of Proposition 1. Since gcd $2,14=2$, we can cancel a 2 from all terms in the first equivalence to write $x \equiv 3(\bmod 7)$. Likewise, we simplify the other two equivalences to reduce the entire system to

$$
\begin{array}{r}
x \equiv 3(\bmod 7) \\
x \equiv 3(\bmod 5) \\
x \equiv 4(\bmod 12) .
\end{array}
$$

We can now follow the strategy of the Chinese Remainder Theorem. Following the notation in the theorem, we have

$$
\begin{array}{r}
m_{1}=5 * 12=60 \equiv 4(\bmod 7) ; \quad y_{1} \equiv 4^{5} \equiv 1024 \equiv 2(\bmod 7) \\
m_{2}=7 * 12=84 \equiv 4(\bmod 5) ; \quad y_{2} \equiv 4^{3} \equiv 64 \equiv 4(\bmod 5) \\
m_{3}=7 * 5=35 \equiv 11(\bmod 12) ; \quad y_{3} \equiv 11^{3} \equiv(-1)^{3} \equiv-1 \equiv 11(\bmod 12) .
\end{array}
$$

Hence, we have $x=y_{1} m_{1} b_{1}+y_{2} m_{2} b_{2}+y_{3} m_{3} b_{3}=2 * 60 * 3+4 * 84 * 3+11 * 35 * 4=2908$.
Hence, we have any solution $x \equiv 2908 \equiv 388(\bmod 420)$.

