

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore – 641 107

AN AUTONOMOUS INSTITUTION

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

CHINESE REMAINDER THEOREM

We are given two arrays num[0..k-1] and rem[0..k-1]. In num[0..k-1], every pair is coprime (gcd for every pair is 1). We need to find minimum positive number x such that:

x % num[0] = rem[0],

x % num[1] = rem[1],

•••••

x % num[k-1] = rem[k-1]

Basically, we are given k numbers which are pairwise coprime, and given remainders of these numbers when an unknown number x is divided by them. We need to find the minimum possible value of x that produces given remainders. **Examples** :

Input: num[] = $\{5, 7\}$, rem[] = $\{1, 3\}$

Output: 31

Explanation:

31 is the smallest number such that:

(1) When we divide it by 5, we get remainder 1.

(2) When we divide it by 7, we get remainder 3.

Input: num[] = $\{3, 4, 5\}$, rem[] = $\{2, 3, 1\}$

Output: 11

Explanation:

11 is the smallest number such that:

- (1) When we divide it by 3, we get remainder 2.
- (2) When we divide it by 4, we get remainder 3.
- (3) When we divide it by 5, we get remainder 1.

Chinese Remainder Theorem states that there always exists an x that satisfies given congruences.

Let num[0], num[1], ...num[k-1] be positive integers that are pairwise coprime. Then, for any given sequence of integers rem[0], rem[1], ... rem[k-1], there exists an integer x solving the following system of simultaneous congruences.

 $\begin{cases} x \equiv rem[0] \qquad \pmod{num[0]} \\ \dots \\ x \equiv rem[k-1] \qquad \pmod{num[k-1]} \end{cases}$

Furthermore, all solutions x of this system are congruent modulo the product, prod = num[0] * num[1] * ... * nun[k-1]. Hence

 $x \equiv y \pmod{num[i]}, \quad 0 \le i \le k-1 \quad \iff \quad x \equiv y \pmod{prod}.$

The first part is clear that there exists an x. The second part basically states that all solutions (including the minimum one) produce the same remainder when divided by-product of num[0], num[1], .. num[k-1]. In the above example, the product is 3*4*5 = 60. And 11 is one solution, other solutions are 71, 131, ... etc. All these solutions produce the same remainder when divided by 60, i.e., they are of form 11 + m*60 where $m \ge 0$. A Naive Approach to find x is to start with 1 and one by one increment it and check if dividing it with given elements in num[] produces corresponding remainders in rem[]. Once we find such we return it. an Х, Below is the implementation of Naive Approach.

Example 5. Use the Chinese Remainder Theorem to find an x such that

$$x \equiv 2 \pmod{5}$$
$$x \equiv 3 \pmod{7}$$
$$x \equiv 10 \pmod{11}$$

Solution. Set $N = 5 \times 7 \times 11 = 385$. Following the notation of the theorem, we have $m_1 = N/5 = 77$, $m_2 = N/7 = 55$, and $m_3 = N/11 = 35$.

We now seek a multiplicative inverse for each m_i modulo n_i . First: $m_1 \equiv 77 \equiv 2 \pmod{5}$, and hence an inverse to $m_1 \mod n_1$ is $y_1 = 3$.

Second: $m_2 \equiv 55 \equiv 6 \pmod{7}$, and hence an inverse to $m_2 \mod n_2$ is $y_2 = 6$. Third: $m_3 \equiv 35 \equiv 2 \pmod{11}$, and hence an inverse to $m_3 \mod n_3$ is $y_3 = 6$.

Therefore, the theorem states that a solution takes the form:

 $x = y_1 b_1 m_1 + y_2 b_2 m_2 + y_3 b_3 m_3 = 3 \times 2 \times 77 + 6 \times 3 \times 55 + 6 \times 10 \times 35 = 3552.$

Since we may take the solution modulo N = 385, we can reduce this to 87, since $2852 \equiv 87 \pmod{385}$.

Chinese Repraender + to reduce redular colubation solve set 7 congruent operations with one variable which as, relatively prime 2 = OI [mod m] 2= a2 (mod m2) a = ar(mod mr) 2=2 (mod 3) a1=2a2=3a3=2 2=3(mod 5) N= m1×102×103 $2 \equiv 2 \pmod{7} - m_1 = 3 \mod{2-5} \mod{3=7}$ M= 3×5×1= 105 M1= M/m1 => H1= 105/3=35 M2= M/m2 = M2= 105/5= 21 $M_{3=M}|_{m_3} \Rightarrow M_{3=105}|_{1=15}$ P=3 Nert find M_1 mod M_1 = (36) mod 3 p-2 ar = = .35 mod 3 = 2 $= 2^{-1} \mod 1^{-1} + 2^{-1} \mod 1^{-1} \varliminf 1^{-1} \mod 1^{-1} \varliminf 1^{-1} \mod 1^{-1} \varliminf 1^{-1} \mod 1^{-1} \varliminf 1^{-1} \backsim 1^{-1} \backsim$ p-2 p=5 a³ = 759375 mod 7

Example 6. Find all solutions x, if they exist, to the system of equivalences:

 $2x \equiv 6 \pmod{14}$ $3x \equiv 9 \pmod{15}$ $5x \equiv 20 \pmod{60}$

Solution. As in Example 2, we first wish to reduce this, where possible, using the strategy outlined following the statement of Proposition 1. Since gcd 2, 14 = 2, we can cancel a 2 from all terms in the first equivalence to write $x \equiv 3 \pmod{7}$. Likewise, we simplify the other two equivalences to reduce the entire system to

 $x \equiv 3 \pmod{7}$ $x \equiv 3 \pmod{5}$ $x \equiv 4 \pmod{12}.$

We can now follow the strategy of the Chinese Remainder Theorem. Following the notation in the theorem, we have

$$m_1 = 5 * 12 = 60 \equiv 4 \pmod{7}; \quad y_1 \equiv 4^5 \equiv 1024 \equiv 2 \pmod{7}$$
$$m_2 = 7 * 12 = 84 \equiv 4 \pmod{5}; \quad y_2 \equiv 4^3 \equiv 64 \equiv 4 \pmod{5}$$
$$m_3 = 7 * 5 = 35 \equiv 11 \pmod{12}; \quad y_3 \equiv 11^3 \equiv (-1)^3 \equiv -1 \equiv 11 \pmod{12}.$$

Hence, we have $x = y_1m_1b_1 + y_2m_2b_2 + y_3m_3b_3 = 2 * 60 * 3 + 4 * 84 * 3 + 11 * 35 * 4 = 2908$. Hence, we have any solution $x \equiv 2908 \equiv 388 \pmod{420}$.