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CHINESE REMAINDER THEOREM

We are given two arrays num[0..k-1] and rem[0..k-1]. In num[0..k-1], every pair is coprime
(gcd for every pair is 1). We need to find minimum positive number x such that:

X % num[0] = rem][0],

X % num[1l] = rem[1],

X % num[k-1] = rem[k-1]
Basically, we are given k numbers which are pairwise coprime, and given remainders of these
numbers when an unknown number x is divided by them. We need to find the minimum
possible value of X that produces given remainders.
Examples :
Input: num[] = {5, 7}, rem[] = {1, 3}
Output: 31
Explanation:
31 is the smallest number such that:

(1) When we divide it by 5, we get remainder 1.

(2) When we divide it by 7, we get remainder 3.

Input: numl[] = {3, 4,5}, rem[] = {2, 3, 1}

Output: 11

Explanation:

11 is the smallest number such that:
(1) When we divide it by 3, we get remainder 2.
(2) When we divide it by 4, we get remainder 3.
(3) When we divide it by 5, we get remainder 1.

Chinese Remainder Theorem states that there always exists an x that satisfies given
congruences.

Let num[0], num[1], ...num[K-1] be positive integers that are pairwise coprime. Then, for
any given sequence of integers rem[0], rem[1], ... rem[k-1], there exists an integer X
solving the following system of simultaneous congruences.



z = rem|0] (mod num|[0])

r=remlk—1] (mod numl[k — 1])

Furthermaore, all solutions x of this system are congruent modulo the product, prod = num[0] * num[1]* ... *

nunfk-1]. Hence
r =1y (mod numli]), 0<i<k—1 — r =1y (mod prod).

The first part is clear that there exists an x. The second part basically states that all solutions
(including the minimum one) produce the same remainder when divided by-product of
num[0], num[1], .. num[k-1]. In the above example, the product is 3*4*5 = 60. And 11 is one
solution, other solutions are 71, 131, .. etc. All these solutions produce the same remainder
when divided by 60, i.e., they are of form 11 + m*60 where m >= 0.
A Naive Approach to find x is to start with 1 and one by one increment it and check if
dividing it with given elements in num[] produces corresponding remainders in rem[]. Once
we find such an X, we return it.
Below is the implementation of Naive Approach.

Example 5. Use the Chinese Remainder Theorem to find an x such that

=10 (mod11)

Solution. Set ¥ = 5 x 7 x 11 = 385. Following the notation of the theorem, we have m; =
N/5 =TT, ma = N/T7 =55, and my = N/11 = 35.

We now seek a multiplicative inverse for each m; modulo n;. First: my; = 77 = 2 (mod 5), and
hence an inverse to m; mod n,; is 3, = 3.

Second: ms = 55 = 6 (mod 7), and hence an inverse to ms mod ns is ¥z = 6.

Third: myz = 35 = 2 (mod 11), and hence an inverse to mg mod ng is y3 = 6.

Therefore, the theorem states that a solution takes the form:

r=thim + yabams +ysbysms =3 x 2 TT+6 x 3 x 55 +6 x 10 x 35 = 3552.

Since we may take the solution modulo N = 385, we can reduce this to 87, since 2852 =
&7 (mod 385).






Example 6. Find all solutions z, if they exist, to the system of equivalences:

2r = 6 (mod 14)
3r =9 (mod 15)
ir = 20 (mod 60)

Solution. Asin Example 2, we first wish to reduce this, where possible, using the strategy outlined
following the statement of Proposition 1. Since ged 2, 14 = 2, we can cancel a 2 from all terms in
the first equivalence to write x = 3 (mod 7). Likewise, we simplify the other two equivalences to
reduce the entire system to

=3 (modT)
x =3 (mod3)
r =4 (mod12).

We can now follow the strategy of the Chinese Remainder Theorem. Following the notation in the
theorem, we have

m=5+12=60=4 (mod7); 5 =4"=1024 =2 (mod7)
me=T#12=84=4 (mod5); p=4"=64=4 (mod§)
my=T+#5=35=11 (mod12); ys=11°=(—1)* = -1 =11 (mod 12).

Hence, we have = = yymyby + yamaebs +ysmghy =260+ 3 4+ 4+ 843+ 11 + 35+ 4 = 2008.
Hence, we have any solution x = 2908 = 388 (mod 420).



