AN AUTONOMOUS INSTITUTION

Accredited by NBA - AICTE and Accredited by NAAC - UGC with 'A' Grade Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai

Euler's Totient function

Euler's Totient function $\Phi(\mathrm{n})$ for an input n is the count of numbers in $\{1,2,3, \ldots, \mathrm{n}-1\}$ that are relatively prime to n , i.e., the numbers whose GCD (Greatest Common Divisor) with n is 1.

Examples :
$\Phi(1)=1$
$\operatorname{gcd}(1,1)$ is 1
$\Phi(2)=1$
$\operatorname{gcd}(1,2)$ is 1 , but $\operatorname{gcd}(2,2)$ is 2 .
$\Phi(3)=2$
$\operatorname{gcd}(1,3)$ is 1 and $\operatorname{gcd}(2,3)$ is 1
$\Phi(4)=2$
$\operatorname{gcd}(1,4)$ is 1 and $\operatorname{gcd}(3,4)$ is 1
$\Phi(5)=4$
$\operatorname{gcd}(1,5)$ is $1, \operatorname{gcd}(2,5)$ is 1 ,
$\operatorname{gcd}(3,5)$ is 1 and $\operatorname{gcd}(4,5)$ is 1
$\Phi(6)=2$
$\operatorname{gcd}(1,6)$ is 1 and $\operatorname{gcd}(5,6)$ is 1 ,
The Euler's totient function, or phi (φ) function is a very important number theoretic function having a deep relationship to prime numbers and the so-called order of integers. The totient $\varphi(n)$ of a positive integer n greater than 1 is defined to be the number of positive integers less than n that are coprime to $n . \varphi(1)$ is defined to be 1 . The following table shows the function values for the first several natural numbers:

\mathbf{n}	$\boldsymbol{\varphi}(\boldsymbol{n})$	numbers coprime to \mathbf{n}
1	1	1
2	1	1
3	2	1,2
4	2	1,3
5	4	$1,2,3,4$
6	2	1,5
7	6	$1,2,3,4,5,6$
8	4	$1,3,5,7$
9	6	$1,2,4,5,7,8$
10	4	$1,3,7,9$
11	10	$1,2,3,4,5,6,7,8,9,10$
12	4	$1,5,7,11$
13	12	$1,2,3,4,5,6,7,8,9,10,11,12$
14	6	$1,3,5,9,11,13$
15	8	$1,2,4,7,8,11,13,14$

when \boldsymbol{n} is a prime number (e.g. $2,3,5,7,11,13), \boldsymbol{\varphi}(\boldsymbol{n})=\boldsymbol{n} \mathbf{- 1}$.
But how about the composite numbers? You may also have noticed that, for example, $15=3 * 5$ and $\varphi(15)=\varphi(3) * \varphi(5)=2 * 4=8$. This is also true for $14,12,10$ and 6 . However, it does not hold for $4,8,9$. For example, $9=3 * 3$, but $\varphi(9)=6 \neq$ $\varphi(3) * \varphi(3)=2 * 2=4$. In fact, this multiplicative relationship is conditional:
when m and n are coprime, $\varphi(m * n)=\varphi(m) * \varphi(n)$.
The general formula to compute $\varphi(\mathrm{n})$ is the following:
If the prime factorisation of n is given by $n=p_{1}{ }^{e}{ }_{1} * \ldots{ }^{*} p_{n}{ }^{e}$, then $\varphi(n)=n *(1-$ $\mathbf{1 / p} \mathbf{p}^{\prime}$ * ... (1-1/pn).

For example:

- $9=3^{2}, \varphi(9)=9^{*}(1-1 / 3)=6$
- $4=2^{2}, \varphi(4)=4^{*}(1-1 / 2)=2$
- $15=3 * 5, \varphi(15)=15^{*}(1-1 / 3) *(1-1 / 5)=15^{*}(2 / 3) *(4 / 5)=8$

Euler's theorem generalises Fermat's theorem to the case where the modulus is not prime. It says that:
if n is a positive integer and a, n are coprime, then $a^{\varphi(\mathrm{n})} \equiv 1 \bmod n$ where $\varphi(\mathrm{n})$ is the Euler's totient function.

Let's see some examples:

- $165=15^{*} 11, \varphi(165)=\varphi(15)^{*} \varphi(11)=80.8^{80} \equiv 1 \bmod 165$
- $1716=11 * 12 * 13, \varphi(1716)=\varphi(11) * \varphi(12) * \varphi(13)=480.7^{480} \equiv 1 \bmod 1716$
- $\varphi(13)=12,9^{12} \equiv 1 \bmod 13$

We can see that Fermat's little theorem is a special case of Euler's Theorem: for any prime $n, \varphi(\mathrm{n})=n-1$ and any number a $0<\mathrm{a}<\mathrm{n}$ is coprime to n. From Euler's Theorem, we can easily get several useful corollaries. First:
if n is a positive integer and a, n are coprime, then $a^{\varphi(\mathrm{n})+1} \equiv \operatorname{a} \bmod n$.
This \quad is \quad because $a^{\varphi(\mathrm{n})+1}=a^{\varphi(\mathrm{n}) *} \mathrm{a}, a^{\varphi(\mathrm{n})} \equiv 1 \quad \bmod n$ and $a \equiv a \bmod n$, so $a^{\varphi(\mathrm{n})+1} \equiv a \bmod n$. From here, we can go even further:
if n is a positive integer and a, n are coprime, $\mathrm{b} \equiv 1 \bmod \varphi(\mathrm{n})$, then $a^{\mathrm{b}} \equiv a \bmod n$.
If $\mathrm{b} \equiv 1 \bmod \varphi(\mathrm{n})$, then it can be written as $b=k^{*} \varphi(n)+1$ for some k. Then $a^{\mathrm{b}}=$ $\mathrm{a}^{\mathrm{k}^{*} \varphi(\mathrm{n})+1}=\left(\mathrm{a}^{\varphi(\mathrm{n})}\right)^{\mathrm{k} *}$. Since $a^{\varphi(\mathrm{n})} \equiv 1 \bmod n,\left(a^{\varphi(\mathrm{n})}\right)^{\mathrm{k}} \equiv 1^{\mathrm{k}} \equiv 1 \bmod n$. Then $\left(\mathrm{a}^{\varphi(\mathrm{n})}\right)^{\mathrm{k} *} \mathrm{a}$ $\equiv a \bmod n$. This is why RSA works.

