AN AUTONOMOUS INSTITUTION

Accredited by NBA - AICTE and Accredited by NAAC - UGC with 'A' Grade Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai

Factorization

Fermat's Factorization method is based on the representation of an odd integer as the difference of two squares.
For an integer \mathbf{n}, we want \mathbf{a} and \mathbf{b} such as:
$\mathrm{n}=\mathrm{a}^{\mathbf{2} \cdot \mathrm{b} \mathbf{2}=(\mathrm{a}+\mathrm{b})(\mathrm{a}-\mathrm{b})}$
where $(a+b)$ and ($a-b$) are
the factors of the number n.

Example:

Feemats Factoring

$$
\begin{aligned}
& n=t^{2}-s^{2} \\
& \quad(t+s)(t-s) \\
& n=t^{2}-s^{2} \\
& s^{2}=t^{2}-n \\
& t=
\end{aligned}
$$

Ex. $\quad 809009$

$$
\begin{aligned}
& h=809009 \\
& t=[\sqrt{n}]+1 \\
& t=\sqrt{809009]+1} \\
& t=[\$ 99.44]+1 \\
& t=[900.44]=9700 \\
& s^{2}=t^{2}-n . \\
& t^{2}=(900)^{2} \Rightarrow 810000 \\
& t^{2}-n=810000-809009 \\
& s^{2}=9991
\end{aligned}
$$

$$
S=\sqrt{991}=31.48 \text { not a trafet square. }
$$

roxt tak $t=[\sqrt{n}]+2$

$$
\begin{aligned}
t & =[900-64]+2 \\
& =902 .
\end{aligned}
$$

$$
8^{2}=t^{2}-n
$$

$$
r^{2}=(902)^{2} \Rightarrow 813604
$$

$$
t^{2}-n=812604-809009
$$

$s^{2}=4595 \Rightarrow$ not a pufect square.

$$
t=[\sqrt{n}] 3 p \Rightarrow 6400=(80)^{2}=\text { perfeet squan }
$$

$$
h=(t+s)(t-s)
$$

$$
=(903+80)(903-80)
$$

$$
n=9831823
$$

2. Input: $\mathrm{n}=6557$

Output: [79,83]
Explanation:
For the above value, the first try for a is ceil value
of square root of 6557 , which is 81 .

Then,
$b^{2}=81^{2}-6557=4$,
as it is a perfect square.
So, $b=2$

So, the factors of 6557 are:
$(\mathrm{a}-\mathrm{b})=81-2=79 \&$
$(a+b)=81+2=83$.

