

SNS COLLEGE OF ENGINEERING Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE NAME : 19CS503 Cryptography and Network Security

III YEAR /V SEMESTER

Unit 2- SYMMETRIC KEY CRYPTOGRAPHY

Topic : Differential and linear cryptanalysis – Block cipher design principles – Block cipher mode of operation

Stream and Block Ciphers

when en/decrypting

Block ciphers process messages into blocks, each of which is then en/decrypted

		03	01	80	01	30	00	00	00	00	01	CO	01	30	E5	3F	00
-	r	30	00	00	00	20	09	00	00	00	01	80	00	30	93	70	2
		30	01	05	00	00	01	AO	00	30	01	04	00	00	01	CO	0
	٠	20	00	00	0.0	00	01	00	03	30	00	00	00	00	01	CO	0
		20	00	00	00	20	00	00	00	20	00	00	00	20	00	00	00
	٠	30	00	00	00	20	00	00	00	20	00	00	00	20	00	00	00
	٠	20	01	00	00	00	01	80	00	30	00	00	00	00	01	20	00
	•	00	00	00	00	00	78	6C	OF	50	00	40	00	30	00	00	00
	•	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
		00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00

Differential and linear cryptanalysis – Block cipher design principles – Block cipher mode of operation /19CS503-**Cryptography and Network Security/ Dr.Jebakumar Imman**uel D/CSE/SNSCE

Stream ciphers process messages a bit or byte at a time

Simple substitution is an example of a stream cipher. Columnar transposition is a block cipher

Stream and Block Ciphers

Block vs Stream Cipher

Block Cipher	St
Block Cipher Converts the plain text into cipher text by taking plain text's <mark>block</mark> at a time.	Stream Cipher Conver text by taking 1 byte
Block cipher uses either 64 bits or more than 64 bits.	While stream cipher u
The complexity of block cipher is <mark>simple</mark> .	While stream cipher is
Block cipher Uses confusion as well as diffusion.	While stream cipher u
In block cipher, reverse encrypted text is hard .	While in stream cipher
The algorithm modes which are used in block cipher are: ECB (Electronic Code Book) and CBC (Cipher Block Chaining).	The algorithm modes are: CFB (Cipher Feed Feedback).

tream Cipher

rts the plaint text into cipher of plain text at a time.

uses 8 bits.

more complex.

uses only confusion.

r, reverse encrypted text is <mark>easy</mark>.

which are used in stream cipher lback) and OFB (Output

Feistel Cipher Structure

	Reversible	e Mapping	Irrever
Ы	aintext	Ciphertext	Plainte
	00	11	00
	01	10	01
	10	00	10
	11	01	11

Each time unique ciphertext block is created.

Differential and linear cryptanalysis – Block cipher design principles – Block cipher mode of operation /19CS503-Cryptography and Network Security/ Dr.Jebakumar Immanuel D/CSE/SNSCE

sible Mapping

Ciphertext xt 11 10 01 \mathbf{O}

Ciphertext of 01 have been produced by one of two plaintext.

Message Authentication and Digital Signature

- 4-bit input, I6 possible input states - mapped by the substitution cipher - 16 possible output states, 4 ciphertext bits.
- Referred as Ideal Block Cipher
 - Because it allows plaintextciphertext mapping for all possible inputs.

key is mapping ; Key length 16 × 4 bits = 64 bits . i.e. concatenate all bits of ciphertext table

Problems with Ideal Block Cipher

- Small block size
 - equivalent to classical substitution cipher
 - cryptanalysis based on statistical characteristics feasible
- Large block size:
 - key must be very large
 - performance/ implementation problems.

Activity

Differential and linear cryptanalysis – Block cipher design principles – Block cipher mode of operation /19CS503-Cryptography and Network Security/ Dr.Jebakumar Immanuel D/CSE/SNSCE

Feistel Cipher

- Feistel proposed applying two or more simple ciphers in sequence so final result cryptographically stronger than component ciphers
- n-bit block length; k-bit key length; 2k transformations (rather than 2n !)
- Feistel cipher alternates: substitutions, transpositions (permutations)

Diffusion and Confusion

To suppress statistical cryptanalysis

Message M=m1,m2,m3.. of characters encrypted as

$$y_n = \left(\sum_{i=1}^k m_{n+i}\right) \mod 26$$

Statistical relationship between the plaintext and ciphertext as complex as possible in order to thwart attempts to deduce the key.

Feistel Cipher Structure

- ▶ Left Hand Side
 - Plaintext 2w bits and Key k
 - \blacktriangleright L₀ and R₀
 - N rounds of processing
 - ► (fig has 16 rounds)
 - Subkey K₁
 - Substitution Left half
 - Round Function F to Right half
 - $F(RE_i, K_{i+1})$
 - Permutation to both halves

Feistel Cipher Design Elements

2M	в в в в в в в в в в в в в в в в в в в	block size - increa size improves sec but slows cipher	asing curity,	$\gamma = f($ round function
	key impresentation key impresentation kard	size - increasing siz oves security, make lustive key searchin er, but may slow ciphe	e s g r	slows cipher
	number o number in slows ciph	f rounds - increasing nproves security, but ner		subkey gener greater comp analysis har cipher

fast software en/decryption - more recent concern for practical use ease of analysis - for easier validation & testing of strength

> **Differential and linear cryptanalysis – Block cipher design principles – Block cipher mode of operation** /19CS503-Cryptography and Network Security/ Dr.Jebakumar Immanuel D/CSE/SNSCE

ration algorithm olexity can make rder, but slows

Block Cipher – Modes of operation

Electronic Code Book (ECB)	 Each block encoded independently using the
Cipher Block Chaining (CBC)	• XOR of the next block of plaintext and the p
Cipher Feedback(CFB)	 pseudorandom output (Preceding ciphertext unit of ciphertext
Output Feedback (OFB)	• Same as CFB except preceding encryption o
Counter (CTR)	• ORed with an encrypted counter. CTR is inc

Differential and linear cryptanalysis – Block cipher design principles – Block cipher mode of operation /19CS503-Cryptography and Network Security/ Dr.Jebakumar Immanuel D/CSE/SNSCE

same key.

preceding block of ciphertext.

) XORed with plaintext to produce next

utput, and full blocks are used.

remented for each subsequent block

Electronic Code Book (ECB)

ECB	$C_j = E(K, P_j)$	$j = 1, \ldots, N$	$P_j = \mathbf{D}(K, C_j)$	$j=1,\ldots,$
-----	-------------------	--------------------	----------------------------	---------------

E: Encryption D: Decryption P_{*i*}: Plaintext block *i* C_i: Ciphertext block i K: Secret key

Application: Secure transmission of single values (e.g., an encryption key)

Ν

Cipher Block Chaining (CBC)

Differential and linear cryptanalysis – Block cipher design principles – Block cipher mode of operation /19CS503-Cryptography and Network Security/ Dr.Jebakumar Immanuel D/CSE/SNSCE

Application: General-purpose block oriented transmission and Authentication

Cipher Feedback(CFB)

	$I_1 = IV$		$I_1 = IV$
CED	$I_j = \text{LSB}_{b-s}(I_{j-1}) \parallel C_{j-1}$	$j = 2, \ldots, N$	$I_j = \mathrm{LSB}_{b-s}(I_{j-1}) \ C_{j-1}$
Сгв	$O_j = \mathrm{E}(K, I_j)$	$j = 1, \ldots, N$	$O_j = \mathrm{E}(K, I_j)$
	$C_j = P_j \oplus \mathrm{MSB}_s(O_j)$	$j = 1, \ldots, N$	$P_j = C_j \oplus \text{MSB}_s(O_j)$

Differential and linear cryptanalysis – Block cipher design principles – Block cipher mode of operation /19CS503-**Cryptography and Network Security/ Dr.Jebakumar Immanuel D/CSE/SNSCE**

$$j = 2, ..., N$$

 $j = 1, ..., N$
 $j = 1, ..., N$

Output FeedBack (OFB)

	$I_1 = Nonce$		$I_1 = Nonce$
	$I_j = O_{j-1}$	$j = 2, \ldots, N$	$I_j = O_{j-1}$
OFB	$O_j = E(K, I_j)$	$j = 1, \ldots, N$	$O_j = \mathbf{E}(K, I_j)$
	$C_j = P_j \oplus O_j$	$j = 1, \ldots, N - 1$	$P_j = C_j \oplus C_j$
	$C_N^* = P_N^* \oplus MS$	$B_u(O_N)$	$P_N^* = C_N^* \oplus$

Application: Stream-oriented transmission over noisy channel (e.g., satellite communication)

> **Differential and linear cryptanalysis – Block cipher design principles – Block cipher mode of operation /19CS503-Cryptography** and Network Security/ Dr.Jebakumar Immanuel D/CSE/SNSCE

Counter (CTR)

CTR

$$C_{j} = P_{j} \oplus E(K, T_{j}) \quad j = 1, \dots, N - 1 \quad P_{j} = C_{j} \oplus E(K, T_{j})$$

$$C_{N}^{*} = P_{N}^{*} \oplus MSB_{u}[E(K, T_{N})] \quad P_{N}^{*} = C_{N}^{*} \oplus MSB_{u}[H$$

Application: General-purpose block oriented transmission and Useful for high-speed requirements

> **Differential and linear cryptanalysis – Block cipher design principles – Block cipher m**ode of operation /19CS503-Cryptography and Network Security/ Dr.Jebakumar Immanuel D/CSE/SNSCE

$$j = 1, \dots, N - 1$$
$$E(K, T_N)]$$

Operation Mode	Description	Type of Result	Data Unit Size
ECB	Each <i>n</i> -bit block is encrypted independently with the same cipher key.	Block cipher	п
CBC Same as ECB, but each block is first exclusive-ored with the previous ciphertext.		Block cipher	n
CFB Each <i>r</i> -bit block is exclusive-ored with an <i>r</i> -bit key, which is part of previous cipher text		Stream cipher	$r \le n$
OFB Same as CFB, but the shift register is updated by the previous <i>r</i> -bit key.		Stream cipher	$r \le n$
CTR	Same as OFB, but a counter is used instead of a shift register.	Stream cipher	n

Assessment 1

- 1 Confusion hides the relationship between the cipher plaintext.
 - a) True
 - b) False

2. The S-Box is used to provide confusion, as it is depermented unknown key.

- a) True
- b) False

REFERENCES

1. William Stallings, Cryptography and Network Security, 6 th Edition, Pearson Education, March 2013.

THANK YOU

Differential and linear cryptanalysis – Block cipher design principles – Block cipher mode of operation /19CS503-Cryptography and Network Security/ Dr.Jebakumar Immanuel D/CSE/SNSCE

