

SNS COLLEGE OF ENGINEERING Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE NAME : 19CS503 Cryptography and Network Security

III YEAR & V SEMESTER

Unit 3- Public Key Cryptography

Topic : Diffie Hellman Key exchange

Diffie Hellman Key Exchange

- Diffie & Hellman in 1976 along with the exposition of public key concepts
 - Securely Exchange keys
- a public-key distribution scheme
 - cannot be used to exchange an arbitrary message
 - rather it can establish a common key
 - known only to the two participants
- value of key depends on the participants (and their private and public key information)
- based on exponentiation in a finite (Galois) field (modulo a prime or a polynomial) - easy
- Security relies on the difficulty of computing discrete logarithms (similar to factoring) – hard

Diffie Hellman – Colors Analogy

Diffie Hellman Key exchange 19CS503 Cryptography and Network Security/ Dr.Jebakumar Immanuel D/CSE/SNSCE

Analogy continued..

- Eve can't determine the secret color because she doesn't have the right color to mix together
- This works based on two assumptions
 - Paint is easy to mix
 - Paint is hard to unmix

Algorithm

- all users agree on global parameters:
 - large prime integer or polynomial q
 - \mathbf{a} a primitive root mod q
- each user (eg. A) generates their key
 - chooses a secret key (number): x_A < q</p>
 - compute their **public key**: $y_{\Delta} = \alpha^{x_A}$ mod q
- each user makes public that key y_A

- - mod q

each user (eg. B) generates their key chooses a secret key (number): x_B < q</p> • compute their **public key**: $y_{R} = \alpha^{x_{B}}$

shared session key for users A & B is K: $K = y_A^{x_B} \mod q$ (which **B** can compute) $K = y_B^{x_A} \mod q$ (which **A** can compute)

Diffie Hellman Key exchange 19CS503 Cryptography and Network Security/ Dr.Jebakumar Immanuel D/CSE/SNSCE

Example

- users Alice & Bob who wish to swap keys:
- ► agree on prime q=353 and α =3
- select random secret keys:
 - A chooses x_A=97, B chooses x_B=233
- compute public keys:
 - $y_{A} = 3_{233}^{97} \mod 353 = 40$ (Alice) $y_{B} = 3_{233}^{233} \mod 353 = 248$ (Bob)
- compute shared session key as: $V = V^{XA} \mod 252 = 240^{97} = 160$
 - $K_{AB} = y_{B_{xB}}^{x_{A}} \mod 353 = 248^{97} = 160$ (Alice) $K_{AB} = y_{A}^{x_{B}} \mod 353 = 40^{233} = 160$ (Bob)

Assessment 1

- 1. Which one of the following algorithm is not used in cryptography?
 - a) rsa algorithm
 - b) diffie-hellman algorithm
- c) electronic code book algorithm
- d) dsa algorithm
- 2. Which is the key exchange algorithm used in CipherSuite parameter? a) RSA
- b) Fixed Diffie-Hellman
- c) Ephemeral Diffie-Hellman
- d) Any of the mentioned

REFERENCES

1. William Stallings, Cryptography and Network Security, 6 th Edition, Pearson Education, March 2013.

THANK YOU

