

SNS COLLEGE OF ENGINEERING Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE NAME : 19CS503 Cryptography and Network Security

III YEAR /V SEMESTER

Unit 3- Public Key Cryptography

Topic : RSA Algorithm

public-key cryptography

Suppose Alice wishes to send Bob a valuable diamond, but the jewel will be stolen if sent unsecured. Both Alice and Bob have a variety of padlocks, but they don't own the same ones, meaning that their keys cannot open the other's locks.

How did Alice send the diamond to Bob?

public-key cryptography

RSA Algorithm 19CS503 Cryptography and Network Security/ Dr.Jebakumar Immanuel D/CSE/SNSCE

public-key cryptography

- 1. Bob first sends Alice an unlocked padlock. Note that Bob would give anyone an unlocked padlock, as the only use for one is to send Bob something.
- 2.Alice adds Bob's lock and sends the package to Bob, and

3. Bob removes his lock and opens the package.

RSA

Key Generation by Alice

Select p, q Calculate n **Calculate** $\phi(n)$ Select integer e **Calculate d** Public key Private key

p and q both prime, p q n = p * q $\varphi(n) = (p - 1)(q - 1)$ gcd ($\phi(n),e$) = 1; 1 < e < $\phi(n)$ $d \equiv e-1 \pmod{\phi(n)}$ $PU = \{e, n\}$ $PR = \{d, n\}$

RSA

Encryption by Bob with Alice's Public Key

□Plaintext: *M* < *n*

Ciphertext: $C = M^e \mod n$

Decryption by Alice with Alice's Public Key

- Ciphertext: *C*
- **D**Plaintext: $M = C^d \mod n$

RSA EXAMPLE

$$P_3 = 0017$$

 $P_6 = 2066$

RSA Security

- possible approaches to attacking RSA are:
 - brute force key search infeasible given size of numbers
 - mathematical attacks based on difficulty of computing ø(n), by factoring modulus n
 - timing attacks on running of decryption
 - chosen ciphertext attacks given properties of RSA

ibers iting ø(n), by factoring

REFERENCES

1. William Stallings, Cryptography and Network Security, 6 th Edition, Pearson Education, March 2013.

THANK YOU

