SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore - 641107

An Autonomous Institution

Accredited by NBA - AICTE and Accredited by NAAC - UGC with 'A' Grade Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE NAME : 19CS503 Cryptography and Network Security

III YEAR /V SEMESTER
Unit 3- Public Key Cryptography

Topic : The Chinese remainder theorem- Exponentiation and Logarithms

How many people What is x ?

Divided into 4s: remainder 3 $x \equiv 3(\bmod 4)$

Divided into 5s: remainder 4 $x \equiv 4(\bmod 5)$

Chinese Remainder Theorem

- used to speed up modulo computations
\square if working modulo a product of numbers $\square \mathrm{eg} . \bmod \mathrm{M}=\mathrm{m}_{1} \mathrm{~m}_{2} \cdot . \mathrm{m}_{\mathrm{k}}$
\square Chinese Remainder - each moduli m_{i} works separately
\square since computational cost is proportional to size, this is faster than working in the full modulus M

Chinese Remainder Theorem

\square can implement CRT in several ways
\square to compute $\mathrm{A}(\bmod \mathrm{M})$
\square first compute all $\mathrm{a}_{\mathrm{i}}=A \bmod \mathrm{~m}_{\mathrm{i}}$ separately
\square determine constants c_{i} below, where $M_{i}=M / m_{i}$
\square then combine results to get answer using

$$
\begin{aligned}
A & \equiv\left(\sum_{i=1}^{k} a_{i} c_{i}\right)(\bmod M) \\
c_{i} & =M_{i} \times\left(M_{i}^{-1} \bmod m_{i}\right) \quad \text { for } 1 \leq i \leq k
\end{aligned}
$$

Theorem: If $m_{1}, m_{2}, \ldots, m_{k}$ are relatively prime and $a_{1}, a_{2}, \ldots, a_{k}$ are integers, then

$$
\begin{aligned}
& x \equiv a_{1}\left(\bmod m_{1}\right) \\
& x \equiv a_{2}\left(\bmod m_{2}\right)
\end{aligned}
$$

$$
x \equiv a_{k}\left(\bmod m_{k}\right)
$$

have a unique solution modulo m, where $m=m_{1} m_{2} \ldots m_{k}$. (That is, there is a solution x with $0 \leq x<m$ and all other solutions are congruent modulo m to this solution.)
(1) Compute $m=m_{1} m_{2} \ldots m_{n}$.
(2) Determine $M_{1}=m / m_{1} ; \quad M_{2}=m / m_{2} ; \ldots ; \quad M_{n}=m / m_{n}$
(3) Find the inverse of $M_{1} \bmod m_{1}, M_{2} \bmod m_{2}, \ldots, M_{n}$ $\bmod m_{n}$ which are $y_{1}, y_{2}, \ldots, y_{n}$,

$$
M_{k} y_{k} \equiv 1\left(\bmod m_{k}\right)
$$

(4) Compute $x=a_{1} M_{1} y_{1}+a_{2} M_{2} y_{2}+\ldots+a_{n} M_{n} y_{n}$
(5) Solve $x \equiv y(\bmod m)$

Example : Solve the system of congruences

$$
x \equiv 2(\bmod 3), x \equiv 3(\bmod 5), x \equiv 2(\bmod 7)
$$

Solution:
(1) $\mathrm{m}=3 \cdot 5 \cdot 7=105$
(2) $M_{1}=m / m_{1}=105 / 3=35, M_{2}=21 ; M_{3}=15$
(3) $y_{1}=2$ is an inverse of $35 \bmod 3$ because $35 \equiv 2(\bmod 3)$
$y_{2}=1$ is an inverse of $21 \bmod 5$ because $21 \equiv 1(\bmod 5)$
$y_{3}=1$ is an inverse of $15 \bmod 7$ because $15 \equiv 1(\bmod 7)$
(4) $x=a_{1} M_{1} y_{1}+a_{2} M_{2} y_{2}+a_{3} M_{3} y_{3}$

$$
=2 \cdot 35 \cdot 2+3 \cdot 21 \cdot 1+2 \cdot 15 \cdot 1=233
$$

(5) $233 \equiv 23(\bmod 105)$

$x \equiv 2(\bmod 3), x \equiv 3(\bmod 5), x \equiv 2(\bmod 7)$

a	2	3	2	

m	3	5	7	105

M	35	21	15	

	$2 . \mathrm{y}_{1}$	$1 . \mathrm{y}_{2}$	$1 . \mathrm{y}_{3}$	

y	2	1	1	

	2.35 .2	3.21 .1	2.15 .1	233

$233 \equiv 23(\bmod 105)$

We conclude that 23 is the smallest positive integer that:
$23 \bmod 3=2$
$23 \bmod 5=3$
$23 \bmod 7=2$

Power of integer modulo 19

a	a^{2}	a^{3}	a^{4}	a^{5}	a^{6}	a^{7}	a^{8}	a^{9}	a^{10}	a^{11}	a^{12}	a^{13}	a^{14}	a^{15}	a^{16}	a^{17}	a^{18}
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	4	8	16	13	7	14	9	18	17	15	11	3	6	12	5	10	1
3	9	8	5	15	7	2	6	18	16	10	11	14	4	12	17	13	1
4	16	7	9	17	11	6	5	1	4	16	7	9	17	11	6	5	1
5	6	11	17	9	7	16	4	1	5	6	11	17	9	7	16	4	1
6	17	7	4	5	11	9	16	1	6	17	7	4	5	11	9	16	1
7	11	1	7	11	1	7	11	1	7	11	1	7	11	1	7	11	1
8	7	18	11	12	1	8	7	18	11	12	1	8	7	18	11	12	1
9	5	7	6	16	11	4	17	1	9	5	7	6	16	11	4	17	1
10	5	12	6	3	11	15	17	18	9	14	7	13	16	8	4	2	1
11	7	1	11	7	1	11	7	1	11	7	1	11	7	1	11	7	1
12	11	18	7	8	1	12	11	18	7	8	1	12	11	18	7	8	1
13	17	12	4	14	11	10	16	18	6	2	7	15	5	8	9	3	1
14	6	8	17	10	7	3	4	18	5	13	11	2	9	12	16	15	1
15	16	12	9	2	11	13	5	18	4	3	7	10	17	8	6	14	1
16	9	11	5	4	7	17	6	1	16	9	11	5	4	7	17	6	1
17	4	11	16	6	7	5	9	1	17	4	11	16	6	7	5	9	1
18	1	18	1	18	1	18	1	18	1	18	1	18	1	18	1	18	1

Problems

\square consider the powers of 7, modulo 19:
$\square 7^{1}=7(\bmod 19)$
$\square 7^{2}=49=11(\bmod 19)$
$\square 7^{3}=343=1(\bmod 19)$
$\square 7^{4}=2401=7(\bmod 19)$
$\square 7^{5}=16807=11(\bmod 19)$

Activity

Discrete Logarithms

\square Let g be the generator of the group $\mathrm{Z}_{n}{ }^{*}$. Given an element $\mathrm{y}=\mathrm{g}^{\mathrm{x}}(\bmod$ n) the discrete logarithm is defined as $\operatorname{dlog}_{n, g}(y)=x$.

Properties of logarithms

$$
\begin{aligned}
& \square \log _{\mathrm{a}} 1=0 \\
& \log _{\mathrm{a}} \mathrm{a}=1 \\
& \log _{\mathrm{a}} \mathrm{xy}=\log _{\mathrm{a}} \mathrm{x}+\log _{\mathrm{a}} \mathrm{y} \\
& \log _{\mathrm{a}} \mathrm{x}^{\mathrm{n}}=\operatorname{nlog}_{\mathrm{a}} \mathrm{x}
\end{aligned}
$$

Properties of Discrete Logarithms

$$
\begin{aligned}
& \square \operatorname{dog}_{\mathrm{n}, \mathrm{~g}}(1)=0 \quad \mathrm{~g}^{0}=1(\bmod \mathrm{n}) \\
& \square \operatorname{dlog}_{\mathrm{ng}}(\mathrm{~g})=1 \quad \mathrm{~g}^{1}=\mathrm{g}(\bmod \mathrm{n}) \\
& \square \operatorname{dlog}_{\mathrm{n}, \mathrm{~g}}(\mathrm{xy})=\left(\operatorname{dlog}_{\mathrm{n}, \mathrm{~g}}(\mathrm{x})+\operatorname{dlog}_{\mathrm{n}, \mathrm{~g}}(\mathrm{y})\right)(\bmod (\Phi(\mathrm{n})) \\
& \left.\square \operatorname{dlog}_{\mathrm{n}, \mathrm{~g}} \mathrm{x}^{\mathrm{r}}=\mathrm{r} \operatorname{dlog}_{\mathrm{n}, \mathrm{~g}} \mathrm{x}\right)(\bmod \Phi(\mathrm{n}))
\end{aligned}
$$

Assessment 1

1. The solution of the linear congruence $4 x=5(\bmod$
a) $6(\bmod 9)$
b) $8(\bmod 9)$
c) $9(\bmod 9)$
d) $10(\bmod 9)$
2. The linear combination of $\operatorname{gcd}(252,198)=18$ is?
a) $252 * 4-198 * 5$
b) $252 * 5-198 * 4$
c) $252 * 5-198 * 2$
d) $252 * 4-198 * 4$

REFERENCES

1. William Stallings, Cryptography and Network Security, 6 th Edition, Pearson Education, March 2013.
2. http://nptel.ac.in/courses/106103015/11
3. http://nptel.ac.in/courses/106103015/17
