

SNS COLLEGE OF ENGINEERING Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE NAME : 19CS503 Cryptography and Network Security

III YEAR /V SEMESTER

Unit 3- Public Key Cryptography

Topic : The Chinese remainder theorem- Exponentiation and Logarithms

How many people What is x?

Divided into 4s: remainder 3					
$x \equiv 3 \pmod{4}$	<i>x</i> ≡				

The Chinese remainder theorem- Discrete Logarithms / 19CS503 Cryptography and Network Security/ Dr.Jebakumar Immanuel D/CSE/SN D/CSE/SNSCE

Fivided into 5s: remainder 4 $\equiv 4 \pmod{5}$

Chinese Remainder Theorem

used to speed up modulo computations □ if working modulo a product of numbers \square eg. mod M = m₁m₂...m_k Chinese Remainder - each moduli m_i works separately □ since computational cost is proportional to size, this is faster than working in the full modulus M

Chinese Remainder Theorem

□ can implement CRT in several ways □ to compute A(mod M) first compute all $a_i = A \mod m_i$ separately determine constants c_i below, where $M_i = M/m_i$ then combine results to get answer using

$$A \equiv \left(\sum_{i=1}^{k} a_i c_i\right) \pmod{M}$$

 $c_i = M_i \times (M_i^{-1} \mod m_i) \text{ for } 1 \le i \le k$

Theorem: If m₁,m₂,...,m_k are relatively prime and a_1, a_2, \ldots, a_k are integers, then

> $x \equiv a_1 \pmod{m_1}$ $x \equiv a_2 \pmod{m_2}$

$x \equiv \underline{a}_k \pmod{m_k}$

have a **unique** solution modulo m, where $m = m_1 m_2 \dots m_k$. (That is, there is a solution x with $0 \le x < m$ and all other solutions are congruent modulo *m* to this solution.)

(1) Compute $m = m_1 m_2 \dots m_n$. (2) Determine $M_1 = m/m_1$; $M_2 = m/m_2$; ...; $M_n = m/m_n$ (3) Find the inverse of $M_1 \mod m_1, M_2 \mod m_2, \ldots, M_n$ mod \underline{m}_n which are y_1, y_2, \dots, y_n ,

$$M_k y_k \equiv 1 \pmod{m_k}.$$

(4) Compute $x = a_1 M_1 y_1 + a_2 M_2 y_2 + ... + a_n M_n y_n$ (5) Solve $x \equiv y \pmod{m}$

Example : Solve the system of congruences

 $x \equiv 2 \pmod{3}$, $x \equiv 3 \pmod{5}$, $x \equiv 2 \pmod{7}$

Solution:

(1) m= $3 \cdot 5 \cdot 7 = 105$

(2) $M_1 = m/m_1 = 105/3 = 35$, $M_2 = 21$; $M_3 = 15$

(3) $y_1 = 2$ is an inverse of 35 mod 3 because $35 \equiv 2 \pmod{3}$ $y_2 = 1$ is an inverse of 21 mod 5 because $21 \equiv 1 \pmod{5}$ $y_3 = 1$ is an inverse of 15 mod 7 because $15 \equiv 1 \pmod{7}$ (4) $x = a_1 M_1 y_1 + a_2 M_2 y_2 + a_3 M_3 y_3$ $= 2 \cdot 35 \cdot 2 + 3 \cdot 21 \cdot 1 + 2 \cdot 15 \cdot 1 = 233$

 $(5) 233 \equiv 23 \pmod{105}$

x≡ 2 (mod 3), x≡ 3 (mod 5), x≡ 2 (mod 7)

а	2	3	2	
				_
m	3	5	7	
М	35	21	15	
				_
	2.y ₁	1.y ₂	1.y ₃	
у	2	1	1	
	2.35.2	3.21.1	2.15.1	

233 **≡ 23** (mod 105)

We conclude that 23 is the smallest positive integer that:

 $23 \mod 3 = 2$ $23 \mod 5 = 3$ $23 \mod 7 = 2$

Power of integer modulo 19

a	a^2	a^3	a^4	a^5	a^6	a ⁷	a ⁸	a9	a^{10}	a ¹¹	a ¹²	a^{13}	a^{14}
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	4	8	16	13	7	14	9	18	17	15	11	3	6
3	9	8	5	15	7	2	6	18	16	10	11	14	4
4	16	7	9	17	11	6	5	1	4	16	7	9	17
5	6	11	17	9	7	16	4	1	5	6	11	17	9
6	17	7	4	5	11	9	16	1	6	17	7	4	5
7	11	1	7	11	1	. 7	11	1	7	11	1	7	11
8	7	18	11	12	1	8	7	18	. 11	12	1	8	7
9	5	7	6	16	11	4	17	1	9	5	7	6	16
10	5	12	6	3	11	15	17	18	9	14	7	13	16
11	7	1	11	7	1	. 11	7	1	11	7	1	11	7
12	11	18	7	8	1	12	11	18	7	8	1	12	11
13	17	12	4	14	11	10	16	18	6	2	7	15	5
14	6	8	17	10	7	3	4	18	5	13	11	2	9
15	16	12	9	2	11	13	5	18	4	3	7	10	17
16	9	11	5	4	7	17	6	1	16	9	11	5	4
17	4	11	16	6	7	5	9	1	17	4	11	16	6
18	1	18	1	18	1	18	1	18	1	18	1	18	1

a^{15} a^{17} a^{16}

 a^{18}

-1

-1

- 1

Problems

consider the powers of 7, modulo 19:
7¹ = 7 (mod 19)
7² = 49 = 11 (mod 19)
7³ = 343 = 1 (mod 19)
7⁴ = 2401 = 7 (mod 19)
7⁵ = 16807 = 11 (mod 19)

Activity

Discrete Logarithms

□ Let g be the generator of the group Z_n^* . Given an element y = g^x (mod n) the discrete logarithm is defined as $dlog_{n,g}(y) = x$.

Properties of logarithms

□
$$\log_a 1 = 0$$

□ $\log_a a = 1$
□ $\log_a xy = \log_a x + \log_a y$
□ $\log_a x^n = n \log_a x$

Properties of Discrete Logarithms

 $\Box \operatorname{dlog}_{n,g}(1) = 0 \qquad g^0 = 1 \pmod{n}$ $\Box \operatorname{dlog}_{n,g}(g) = 1 \qquad g^1 = g(\operatorname{mod} n)$ $\Box dlog_{n,g}(xy) = (dlog_{n,g}(x) + dlog_{n,g}(y)) (mod(\Phi(n)))$ $\Box \operatorname{dlog}_{n,g} x^{r} = r \operatorname{dlog}_{n,g}(x) \pmod{\Phi(n)}$

Assessment 1

- The solution of the linear congruence 4x = 5(mod a) 6(mod 9)
 8(mod 9)
 9(mod 9)
 10(mod 9)
- 2. The linear combination of gcd(252, 198) = 18 is?
- a) 252*4 198*5
- b) 252*5 198*4
- c) 252*5 198*2
- d) 252*4 198*4

REFERENCES

- 1. William Stallings, Cryptography and Network Security, 6 th Edition, Pearson Education, March 2013.
- 2. http://nptel.ac.in/courses/106103015/11
- 3. http://nptel.ac.in/courses/106103015/17

THANK YOU

