19ME503	CAD/CAM AND AUTOMATION	L	Т	Р	J	С	
V SEM		2	0	2	0	3	
UNIT I CO	MPUTER AIDED DESIGN AND GEOMETRIC MODELING				6+	3	
Theory: Introduction – CAD definition – design process – CAD activities – benefits and scope of CAD.							
Transformations: Scaling, Rotation, Pan, Redraw, Regenerate-Geometric modelling techniques: wire frame,							
surface, solid modelling.							
Practical: To learn and obtain the knowledge in creating a model by utilizing the software.							
1. Flange Coupling & Plummer Block							
2. Screw Jack & Universal Joint							
UNITII CN	NC MACHINE TOOLS AND COMPONENTS				6+	3	
<u>Theory:</u> Numerical control – development of NC – DNC – CNC and adaptive control systems –CNC EDM machine							
- Coordinate measuring machines: construction, working principles and specifications - maintenance of CNC							
machines- CNC lathe							
<u>Practical</u> : To learn and develop the skill in creating a component by utilizing the Automated Machines.							
MANUAL PART PROGRAMMING (Using G and M Codes) in CNC lathe							
1. Part prog	gramming for Linear and Circular interpolation.						
2. Part programming using standard canned cycles for Turning							
	NC CONTROL SYSTEM AND PART PROGRAMMING				6+	3	
<u>Theory</u> : Open loop and closed loop control system - feedback devices: encoders – linear and rotary transducers.							
NC dimensioning	g –reference points – machine zero, work zero, tool zero and tool o	ffsets	- Coor	dinate	e syst	em –	
types of motion control: point-to-point, paraxial and contouring – Types of NC part programming – G and M							
codes - turning and milling part programming examples.							
Practical: To learn and develop the skill in creating a component by utilizing the Automated Machines.							
MANUAL PART PROGRAMMING (using G and M codes) in CNC milling							
1. Part programming for Linear and Circular interpolation and Contour motions							
2. Part programming involving canned cycles for Drilling, Peck drilling, and Boring							
	JIOMATION AND FMS	<u>.</u>			6+.	5	
Ineory: Introduction, Automation strategies, Types of Automation - Hard and Soft Automation, AGVs-Group							
Technology: Introduction, Coding Methods-FMIS - Components of FMIS - Types - FMIS workstation -Material							
handling and storage systems- FIVIS layout -Application and benefits.							
<u>riduidai.</u> 1. To Study on Part Coding and Group Technology							
To introduce EMS as modern systems of flexible manufacturing							
					6+	3	
Theory: BIA de	finition of Robot Laws of robotics - Classification of robots- robot :	anator	ny Po	int to	noint		
continuous path robotic systems. Joints. End Effectors. Grippers - Mechanical Magnetic and Pneumatic							
Applications							
Practical:							
1. Assignment on Introduction to Robot configuration and programming.							
2. Demonstration of Robot with 2 DOF, 3 DOF, 4 DOF							

	L:30 T:0 P:15 TOTAL: 45 PERIODS			
TEXT BOOKS				
1.	Mikell.P.Groover "Automation, Production Systems and Computer Integrated Manufacturing",			
	Pearson India Education Services India Ltd., 2016 (Unit I, II, III, IV, V).			
2.	Radhakrishnan P, Subramanyan.SandRaju V., "CAD/CAM/CIM", New Age International (P) Ltd, New			
	Delhi,2nd Edition, 2013 (Unit II, III, V)			
REFERENCES				
1.	Ibrahim Zeid, Mastering CAD/CAM, Special Indian Edition 2009, Tata McGraw-Hill Publishing			
	Company Ltd. (Unit III,IV,V)			
2.	P.N.Rao, CAD/CAM Principles and Applications, 2010, Tata McGraw Hill Publishing Company Ltd.			
	(Unit I,II).			
3.	Rajput R.K., "Robotics and Industrial Automation", S.Chand and Company, 2010 (Unit IV &, V)			
WEB RESOURCES				
1.	https://www.cadcim.com/			
2.	https://eduinformer.com/cad-cam-cim-radhakrishnan-subramanyan-raju/			
3.	http://learnaboutrobots.com/			
COURSE OUTCOME				
At the end of the course the students will be able to				
CO-1	Describe the principles of CAD, geometric modelling techniques and practice drawings in CAD			
CO-2	Identify CNC machine tools, its components and to write CNC part program.			
CO-3	Learn about CNC control systems and to write part programming for CNC milling.			
CO-4	Understand the use of computers in Automation and study of FMS, part programming and Group			
	Technology			
CO-5	Write the robot programming and application of robots			