

Data preprocessing T.R.Lekhaa AP-IT SNSCE

Data preprocessing

Why data preprocessing?

- Real world data can be incomplete, noisy and inconsistent form.
- These data needs to be preprocessed in order to help improve the quality of the data, and quality of the mining results.

Several data preprocessing techniques

- Data cleaning
 - Applied to remove noise, inconsistent data
- Data integration
 - Merges data from multiple sources
- Data reduction
 - Reduce data size by aggregating, eliminating redundant features
- Data transformations
 - Normalization data are scaled to fall within a smaller range(0.0 to 1.0) -> improves accuracy & efficiency

Why preprocess the data?

- Factors comprising data quality
 - Accuracy
 - Completeness
 - Consistency
 - Timeliness
 - Believability
 - interpretability

Data preprocessing techniques/ major tasks in data preprocessing

- Data cleaning
 - Fill in missing values, smoothing noisy data, identifying or removing outliers, and resolve inconsistencies
- Data integration
 - Integration of multiple databases, data cubes, or files
- Data reduction
 - reduce the data size by aggregating, eliminating, or clustering etc
 - Strategy: Dimensionality Reduction :
 - Data encoding schemes are applied to obtain reduced or compressed data
 - Data Compression technique: Eg. Wavelet transforms, PCA (Principal Component Analysis)
 - Attribute subset selection: Eg. Removing irrelevant attributes
 - Attribute construction: Eg. Small set of more useful attributes derived from original set
 - Strategy: Numerosity Reduction
 - Data replaced by alternative, smaller representation using parametric models (eg. Regression or log-linear models) or nonparametric models (e.g histograms, clusters, sampling or data aggregation)

• Data transformation

- The data are transformed or consolidated into forms appropriate for mining.
- Normalization, Data discretization, concept hierarchy

Data cleaning

- Data in the Real World Is Dirty: Lots of potentially incorrect data, e.g., instrument faulty, human or computer error, transmission error
 - <u>incomplete</u>: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data
 - e.g., *Occupation* = "" (missing data)
 - <u>noisy</u>: containing noise, errors, or outliers
 - e.g., *Salary* = "-10" (an error)
 - <u>inconsistent</u>: containing discrepancies in codes or names, e.g.,
 - *Age* = "42", *Birthday* = "03/07/2010"

How to Handle Missing Data?

- Ignore the tuple
 - (If Class label miss), not effective
- Fill in the missing value manually
 - Time consuming & not feasible
- Fill in it automatically with
 - a global constant (unknown or infinity symbol), simple but mining program consider unknown as one class
 - Use a measure of central tendency for the attribute mean (eg mean or median)
 - Mean symmetric data
 - Median skewed data (positive skewed values < median, negative skewed values > median)
 - the attribute mean for all samples belonging to the same class
 - eg if classified customer according to credit risk, may replace the missing value with mean value for customers in same credit risk category
 - If data distribution skewed median value is better choice
 - the most probable value
 - Determined based on regression, inference-based tools using Bayesian or decision tree induction

Noisy Data

- What is noise?
- Random error or variance in a measured variable

How to Handle Noisy Data?

- Binning
 - Smooth a sorted data value by consulting its neighborhood i.e the values around it.
 - first sort data and partition into (equal-frequency) bins or buckets
 - then one can smooth by bin means, smooth by bin median, smooth by bin boundaries, etc.
- Regression
 - smooth by fitting the data into regression functions
 - Linear Regression –finding best line to fit two attributes or variables so that one attribute used to predict other
 - Multiple Linear Regression more than two attributes involved
- Outlier Analysis detected by Clustering
 - detect and remove outliers

- Data smoothing methods are also used for
 - Data discretization (transformation) & data reduction

Binning - Example

- □ Sorted data for price (in dollars): 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34
- * Partition into equal-frequency (equal-depth) bins:
 - Bin 1: 4, 8, 9, 15
 - Bin 2: 21, 21, 24, 25
 - Bin 3: 26, 28, 29, 34
- * Smoothing by **bin means**:
 - Bin 1: 9, 9, 9, 9
 - Bin 2: 23, 23, 23, 23
 - Bin 3: 29, 29, 29, 29
- * Smoothing by **bin boundaries**:
 - Bin 1: 4, 4, 4, 15
 - Bin 2: 21, 21, 25, 25
 - Bin 3: 26, 26, 26, 34

Data Cleaning as a Process

- Data discrepancy detection
 - first step in data cleaning
- Caused by several factors: poorly designed data entry forms , human errors in data entry, deliberate errors (don't like to give infor.) data decay(outdated addresses), errors in instrumentation devices
 - Uses the knowledge of metadata
 - Check unique rule, consecutive rule and null rule
 - Use commercial tools
 - Data scrubbing: use simple domain knowledge (e.g., spell-check) to detect errors and make corrections
 - Data auditing: by analyzing data to discover rules and relationship (e.g., correlation and clustering to find outliers)
- Data transformation
 - Data migration tools: allow transformations to be specified eg. Replace the string "roll no" by "serial no"
 - ETL (Extraction/Transformation/Loading) tools: allow users to specify transformations through a graphical user interface

Data Integration

• Data integration:

- Combines data from multiple sources into a coherent store
- Integrate metadata from different sources
- Entity identification problem:
 - Issue in integration: Schema Integration and Object matching
 - How equivalent real-world entities from multiple data sources be matched? entity Identification Problem
 - Same entity can be represented in different forms, e.g., customer-id == cust-number
 - Metadata can be used to avoid errors in schema integration
- Redundancy and correlation analysis is another issue. It can be detected by correlation analysis
- Tuple Duplication
- Detecting and resolving data value conflicts
 - For the same real world entity, attribute values from different sources are different
 - Possible reasons: different representations, different scales, e.g., metric vs. British units(imperial units)

Redundancy and Correlation Analysis

- Correlation analysis
- Given two attributes, correlation analysis measure how strongly one attribute implies on another.
- Nominal Data X^2 (chi-square) test
- Numeric attributes correlation coefficient & covariance

X^2 correlation for Nominal Data

- Correlation between two attributes A and B discovered by chi-square test
- A has c distinct values namely, $a_{1,}a_{2,}$ a_{c}
- B has r distinct values namely $b_1, b_2, \dots b_r$
- Data tuples between A and B shown as contingency table, with c values of A making up columns and r values of B making up rows.

$$\chi^{2} = \sum \frac{(Observed - Expected)^{2}}{Expected}$$

The larger the X² value, the more likely the variables are related

Contd..,

Observed frequency – actual count Expected frequency can be calculated as

$$\boldsymbol{e}_{ij}(Expected) = \frac{count(A = \boldsymbol{a}_i)^* count(B = \boldsymbol{b}_j)}{n}$$

N – number of data tuples $count(A=a_i)$ – no. of tuples having value a_i $count(B=b_j)$ – no. of tuples having value b_j

Example – chi-square calculation

- Problem:
 - 1500 people
 - Gender of each person noted
 - Preferred type of reading material fiction or nonfiction
- Two attributes: gender & preferred_reading
- Observed frequency from contingency table:

	Male	Female	Total
Fiction	250(90)	200(360)	450
Non-fiction	50(210)	1000(840)	1050
Total	300	1200	1500

• Expected frequency of cell(male, fiction) is as follows

 e_{11} = [count(male) * count(fiction)] / n = (300*450)/1500 = 90

• Chi-square calculation:

$$\chi^{2} = \frac{(250 - 90)^{2}}{90} + \frac{(50 - 210)^{2}}{210} + \frac{(200 - 360)^{2}}{360} + \frac{(1000 - 840)^{2}}{840} = 507.93$$

- 2*2 table, DF(Degree of Freedom) = (2-1)*(2-1) = 1
- For DF =1, value needed to reject hypothesis at 0.001level is 10.828
- Hence calculated value is (507.93) > 10.828, can reject gender and preferred_reading attributes are independent and conclude that they are strongly correlated

Example

 The number of students passed in exam and number of students who live near to the university is correlated with each other and maybe a number of students who live near to the university can be a cause of the student result.

[quads id=2]

Live near University	Observed=140	Observed=190	330
	Expected = 180*330/1320	Expected = 1140*330/1320	
	Expected =45	Expected =285	
Not live near	Observed=40	Observed=950	990
Ginversity	Expected = 180*990/1320	Expected = 1140*990/1320	
	Expected =135	Expected =855	

Solution

$$Chi - Square = \sum_{i=1}^{i=1} \frac{(Observed - Expected)^{2}}{Expected} \text{ www.T4Tutorials.com}$$

$$\frac{(140 - 45)^{2}}{45} + \frac{(40 - 135)^{2}}{135} + \frac{(190 - 285)^{2}}{285} + \frac{(950 - 855)^{2}}{855}$$

$$= \frac{(95)^{2}}{45} + \frac{(-95)^{2}}{135} + \frac{(-95)^{2}}{285} + \frac{(95)^{2}}{855}$$

$$= \frac{(9025)^{11}}{45} + \frac{(9025)^{11}}{135} + \frac{(9025)^{11}}{285} + \frac{(9025)^{11}}{855}$$

$$= 200.55 + 66.85 + 31.66 + 10.55$$

$$= 309.61$$

Degrees of freedom:

$$DF = (r - 1) * (c - 1)$$

Level of significance:

.01	.05	.10	
-----	-----	-----	--

Data Integration

• Careful integration of the data from multiple sources may help reduce/avoid redundancies and inconsistencies and improve mining speed and quality

- **Data reduction**: Reduced representation of the data set that is much smaller in volume but yet produces the same (or almost the same) analytical results
- Why data reduction? A database/data warehouse may store terabytes of data. Complex data analysis may take a very long time to run on the complete data set.

Data reduction strategies

- Data cube aggregation where aggregation operations are applied to the data for construction of a data cube.
- Attribute subset selection reduces the data set size by removing irrelevant or redundant attributes. Goal to find a minimum set of attributes.
- Dimensionality reduction, e.g., remove unimportant attributes
 - Wavelet transforms
 - Principal Components Analysis (PCA)
 - Feature subset selection
- Numerosity reduction (some simply call it: Data Reduction)
 - Regression and Log-Linear Models
 - Histograms, clustering, sampling
 - Data cube aggregation
- Data compression

Attribute subset selection:

- stepwise forward selection
- Stepwise backward elimination
- Combination of forward selection and backward elimination

- Dimensionality reduction
 - Data encoding or transformations are applied so as to obtain reduced or compressed representation of the original data.
 - Lossless- if the original data can be reconstructed from the compressed data without any loss of information
 - Lossy- if the original data can be reconstructed from the compressed data with loss of information.

Data Transformation

- The data are transformed or consolidated into forms appropriate for mining.
- Methods
 - Smoothing: Remove noise from data
 - Aggregation: Summarization, data cube construction
 - Normalization: Scaled to fall within a smaller, specified range
 - min-max normalization
 - z-score normalization
 - normalization by decimal scaling
 - Discretization: Concept hierarchy climbing

Normalization

• **Min-max normalization**: to [new_min_A, new_max_A]

$$v' = \frac{v - min_{A}}{max_{A} - min_{A}} (new max_{A} - new min_{A}) + new min_{A}$$

- Ex. Let income range \$12,000 to \$98,000 normalized to [0.0, 1.0]. Then \$73,000 is mapped to $\frac{73,600-12,000}{98,000-12,000}(1.0-0)+0=0.716$
- **Z-score normalization** (μ : mean, σ : standard deviation):

$$v' = \frac{v - \mu_A}{\sigma_A}$$

- Ex. Let $\mu = 54,000$, $\sigma = 16,000$. Then

 $\frac{73,600-54,000}{16,000} = 1.225$

• Normalization by decimal scaling

 $v' = \frac{v}{10^{j}}$ Where *j* is the smallest integer such that Max(|v'|) < 1