
1

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

DEPARTMENT OF COMPUTER SCIENCE AND DESIGN

COURSE NAME : 19CS306 - DATA STRUCTURES

II YEAR / III SEMESTER

UNIT I – LINEAR STRUCTURES-LIST

1.1 INTRODUCTION

Data Structures

Data structure is a representation of logical relationship existing between individual elements

of data. In other words, a data structure defines a way of organizing all data items that

considers not only the elements stored but also their relationship to each other. The term data

structure is used to describe the way data is stored.

To develop a program of an algorithm we should select an appropriate data structure for that

algorithm. Therefore, data structure is represented as: Algorithm + Data structure =

Program

Types of Data Structures

 Primitive data structures.

 Non-primitive data structures.

Primitive Data Structures are the basic data structures that directly operate upon the machine

instructions. They have different representations on different computers.

Non-primitive data structures are more complicated data structures and are derived from

primitive data structures. They emphasize on grouping same or different data items with

relationship between each data item.

2

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

Classification of Data Structure

Types of Data organization in memory

Contiguous- Continuous memory allocation

 Ex: Array

Da t a St ruc t ure s

Pri mit iv e Da t a St ruc t ure s No n- Pri mit iv e Da t a St ruc t ure s

L ist s

L ine ar L ist s No n- L in e ar L i st s

T re e s Gra p h s Q u eu es St ac ks

Fi le s Array s Poi nt ers Ch ar Flo at Int e g er

3

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

Non Contiguous – Data can be scattered in memory, but we linked to each other in some way

Ex: Linked list,Tree,Graph

1.2 ABSTRACT DATA TYPE (ADT):

 An abstract data type is an abstraction of a data structure that provides only the

interface to which the data structure must adhere The interface does not give any

specific details about something should be implemented or in what programming

language

 The abstract data type is special kind of data type, whose behavior is defined by a set of

values and set of operations.

 The keyword “Abstract” is used as we can use these data types, we can perform

different operations. But how those operations are working that is totally hidden from

the user.

 The ADT is made of with primitive data types, but operation logics are hidden.

 Examples of ADT are Stack, Queue, and List etc.

 A List is an abstract data type that is implemented using a dynamic array and linked

list.

 A queue is implemented using linked list-based queue, array-based queue, and

stack-based queue.

 A Map is implemented using Tree map, hash map, or hash table.

..

Abstract data type with a real-world example

If we consider the smartphone. We look at the high specifications of the smartphone, such as:

o 4 GB RAM

4

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

o Snapdragon 2.2ghz processor

o 5 inch LCD screen

o Dual camera

o Android 8.0

The above specifications of the Smartphone are the data, and we can also perform the following

operations on the Smartphone:

o call(): We can call through the smartphone.

o text(): We can text a message.

o photo(): We can click a photo.

o video(): We can also make a video.

The Smartphone is an entity whose data or specifications and operations are given above. The

abstract/logical view and operations are the abstract or logical views of a Smartphone.

1.3 ARRAY BASED IMPLEMENTATION OF LIST

Array

An array is a collection of variables in the same datatype. We can’t group different data types in

the array. Like, a combination of integer and char, char and float etc.

Hence array is called as the homogeneous data type.

Ex: int arr[5]={10,20,30,40,50};

Using index value, we can directly access the desired element in the array.

Array index starts from 0, not 1.

To access the 1st element, we can directly use index 0. i.e a[0]

To access the 5th element, we can directly use index 4. i.e a[4]

We can manipulate the Nth element by using the index N - 1. {Where N > 0}

5

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

In general, an array of size N will have elements from index 0 to N-1.

Insertion operation

Insert a given element at a specific position in an array.

Algorithm

1. Get the element value which needs to be inserted.

2. Get the position value.

3. Check whether the position value is valid or not.

4. If it is valid,

 Shift all the elements from the last index to position index by 1 position to the right.

 insert the new element in arr[position]

5. Otherwise,

 Invalid Position

Input

int arr[5] = {10, 20, 30, 40, 50}

Element = 100 position = 2.

6

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

Implementation:

#include<stdio.h>

#define size 5

int main()

{

int arr[size] = {1, 20, 5, 78, 30};

int element, pos, i;

printf("Enter position and element\n");

scanf("%d%d",&pos,&element);

if(pos <= size && pos >= 0)

{

//shift all the elements from the last index to pos by 1 position to right

for(i = size; i > pos; i--)

arr[i] = arr[i-1];

//insert element at the given position

7

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

arr[pos] = element;

for(i = 0; i <= size; i++)

printf("%d ", arr[i]);

}else

printf("Invalid Position\n");

return 0;

}

Delete operation

Delete a given element from an array.

Algorithm

1. Find the given element in the given array and note the index.

2. If the element found,

 Shift all the elements from index + 1 by 1 position to the left.

 Reduce the array size by 1.

3. Otherwise, print "Element Not Found"

Input

Array : {1, 20, 5, 78, 30}

Element : 78

8

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

Implementation

#include<stdio.h>

#define size 5

int main()

{

int arr[size] = {1, 20, 5, 78, 30};

int key, i, index = -1;

printf("Enter element to delete\n");

scanf("%d",&key);

for(i = 0; i < size; i++)

{

if(arr[i] == key)

{

index = i;

break;

}

}

9

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

if(index != -1)

{

//shift all the element from index+1 by one position to the left

for(i = index; i < size - 1; i++)

arr[i] = arr[i+1];

printf("New Array : ");

for(i = 0; i < size - 1; i++)

printf("%d ",arr[i]);

}

else

printf("Element Not Found\n");

return 0;

}

Search operation

Search whether the given key is present or not in the array.

Input

arr[5] = {10, 30, 5, 100, 4};

key = 30

Algorithm

1. Iterate the array using the loop.

2. Check whether the given key present in the array i.e. arr[i] == key.

3. If yes,

 print "Search Found".

4. Else

10

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

 print "Search Not Found".

Implementation

#include<stdio.h>

#define size 5

int main()

{

int arr[size] = {34, 2, 23, 100, 60};

int key,i,flag = 0;

printf("Enter element to search\n");

scanf("%d",&key);

/*

* iterate the array elements using loop

* if any element matches the key, set flag as 1 and break the loop

* flag = 1 indicates that the key present in the array

11

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

* if execution comes out of loop and the flag remains 0, print search not found

*/

for(i = 0; i < size; i++)

{

if(arr[i] == key)

{

flag = 1;

break;

}

}

if(flag == 1)

printf("Search Found\n");

else

printf("Search Not Found\n");

return 0;

}

Advantages

 There is no wasted space for an individual element (do not need space for pointers)

Disadvantages

 Lacking efficiency for insertion/deletion operations and memory allocation.

Application

 Arrays are used to implement data structures like a stack, queue, etc.

 Arrays are used for matrices and other mathematical implementations.

 Arrays are used in lookup tables in computers.

 Arrays can be used for CPU scheduling

1.4 LINKED LISTS

12

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

A linked list is a linear data structure, in which the elements are not stored at contiguous

memory locations

The linked list is a linear data structure where each node has two parts.

1. Data

2. Reference to the next node

Data: we can store the required information. It can be any data type such as int,float,double.

int age; char name[20];

Reference to the next node: It will hold the next nodes address. Hence it is a type pointer

Here, we need to group two different data types (heterogeneous).

We can use structure data type to group the different data types. So, every node in a linked list

is a structure data type.

struct node{

 int data;

 struct node *next;

};

Types of Linked List

Following are the various types of linked list.

Simple or Singly Linked List − Item navigation is forward only.

Doubly Linked List − Items can be navigated forward and backward.

Circular Linked List − Last item contains link of the first element as next and the first element

has a link to the last element as previous.

1.4.1 SINGLY LINKED LIST

13

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

Singly Linked List in C is one of the simplest linear data structures, that we use for storing our

data in an easy and efficient way. Linked List in C comprises nodes like structures, which can

further be divided into 2 parts in the case of a singly linked list. These two parts are-:

Node – for storing the data.

Pointer – for storing the address of the next node.

In a Singly linked list there is only one pointer type variable that contains the address of the next

node.

Let's create and allocate memory for 3 nodes

struct node

{

 int data;

 struct node *next;

};

struct node *head,*middle,*last;

head = malloc(sizeof(struct node));

middle = malloc(sizeof(struct node));

last = malloc(sizeof(struct node));

Assign values to each node

head->data = 10;

middle->data = 20;

last->data = 30;

14

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

1. Stack memory stores all the local variables and function calls (static memory).

Example: int a = 10;

2. Heap memory stores all the dynamically allocated variables.

Example: int *ptr = malloc(sizeof(int)); Here, memory will be allocated in the heap section. And

the ptr resides in the stack section and receives the heap section memory address on successful

memory allocation.

3. Address of the dynamic memory which will be assigned to the corresponding variable.

Linking each nodes

headnode -> middlenode-> lastnode-> NULL

head->next = middle;

middle->next = last;

last->next = NULL; //NULL indicates the end of the linked list

15

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

1. head => next = middle. Hence head => next holds the memory address of the middle node

(2024).

2. middle => next = last. Hence middle => next holds the memory address of the last node

(3024).

3. last => next = NULL which indicates it is the last node in the linked list.

4. The simplified version of the heap memory section.

Printing each node data in a linked list

To print each node's data, we have to traverse the linked list till the end.

Algorithm

1. Create a temporary node (temp) and assign the head node's address.

2. Print the data which present in the temp node.

3. After printing the data, move the temp pointer to the next node.

4. Do the above process until we reach the end.

16

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

1. temp points to the head node. temp => data = 10 will be printed. temp will point to the next

node (Middle Node).

2. temp != NULL. temp => data = 20 will be printed. Again temp will point to the next node

(Last Node).

3. temp != NULL. temp => data = 30 will be printed. Again temp will point to the next node

which is NULL.

4. temp == NULL. Stop the process we have printed the whole linked list.

Code

17

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

struct node *temp = head;

while(temp != NULL)

{

 printf("%d ",temp->data);

 temp = temp->next;

}

Why do we need to use the temp node instead head?

If we use the head pointer instead of the temp while printing the linked list, we will miss the

track of the starting node. (After printing the data head node will point the NULL).

To avoid that, we should not change the head node's address while processing the linked list. We

should always use a temporary node to manipulate the linked list.

Sample Linked List Implementation

Example

#include<stdio.h>

#include<stdlib.h>

int main()

{

 //node structure

 struct node

 {

 int data;

 struct node *next;

 };

 //declaring nodes

 struct node *head,*middle,*last;

 //allocating memory for each node

 head = malloc(sizeof(struct node));

 middle = malloc(sizeof(struct node));

 last = malloc(sizeof(struct node));

 //assigning values to each node

 head->data = 10;

 middle->data = 20;

 last->data = 30;

18

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

 //connecting each nodes. head->middle->last

 head->next = middle;

 middle->next = last;

 last->next = NULL;

 //temp is a reference for head pointer.

 struct node *temp = head;

 //till the node becomes null, printing each nodes data

 while(temp != NULL)

 {

 printf("%d->",temp->data);

 temp = temp->next;

 }

 printf("NULL");

 return 0;

}

Inserting a node at the beginning of a linked list

 The new node will be added at the beginning of a linked list.

Example

Assume that the linked list has elements: 20 30 40 NULL

If we insert 100, it will be added at the beginning of a linked list.

After insertion, the new linked list will be

100 20 30 40 NULL

Algorithm

1. Declare a head pointer and make it as NULL.

2. Create a new node with the given data.

3. Make the new node points to the head node.

4. Finally, make the new node as the head node.

1. Declare a head pointer and make it as NULL

struct node

19

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

{

 int data;

 struct node *next;

};

struct node *head = NULL;

2.Create a new node with the given data.

void addFirst(struct node **head, int val)

{

 //create a new node

 struct node *newNode = malloc(sizeof(struct node));

 newNode->data = val;

 }

3.Make the new node points to the head node

void addFirst (struct node **head, int val)

{

 //create a new node

 struct node *newNode = malloc(sizeof(struct node));

 newNode->data = val;

 newNode->next = *head;

 }

4.Make the new node as the head node

void addFirst(struct node **head, int val)

{

 //create a new node

 struct node *newNode = malloc(sizeof(struct node));

 newNode->data = val;

 newNode->next = *head;

 *head = newNode;

}

Example

20

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

Insert 10

Steps

1. A newly allocated node with data as 10.

2. Head points to NULL.

3. New node -> next points to the head which is NULL. So newnode->next = NULL.

4. Make the head points to the new node. Now, the head will hold the address of the new node w

hich is 1024.

5. Finally, the new linked list.

Insert 20

Steps

1. A newly allocated node with data as 20.

2. Head points to the memory address 1024 (It has only one node. 10->NULL).

3. New node -> next points to the head which is 1024. So newnode->next = 1024 (10->NULL) w

ill be added back to the new node.

4. Make the head points to the new node. Now, the head will hold the address of the new node w

hich is 2024.

5. Finally, the new linked list.

21

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

Program to insert a node at the beginning of linked list

#include<stdio.h>

#include<stdlib.h>

struct node

{

 int data;

 struct node *next;

};

void addFirst(struct node **head, int val)

{

 //create a new node

 struct node *newNode = malloc(sizeof(struct node));

 newNode->data = val;

 newNode->next = *head;

 *head = newNode;

22

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

}

void printList(struct node *head)

{

 struct node *temp = head;

 //iterate the entire linked list and print the data

 while(temp != NULL)

 {

 printf("%d->", temp->data);

 temp = temp->next;

 }

 printf("NULL\n");

}

int main()

{

 struct node *head = NULL;

 addFirst(&head,10);

 addFirst(&head,20);

 printList(head);

 return 0;

}

Inserting a node at the end of a linked list

The new node will be added at the end of the linked list.

Example

Input

Linked List : 10 20 30 40 NULL.

50

Output

Linked List : 10 20 30 40 50 NULL.

Algorithm

1. Declare head pointer and make it as NULL.

2. Create a new node with the given data. And make the new node => next as

NULL. (Because the new node is going to be the last node.)

23

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

3. If the head node is NULL (Empty Linked List), make the new node as the head.

4. If the head node is not null, (Linked list already has some elements),

 find the last node.

 make the last node => next as the new node.

1. Declare head pointer and make it as NULL.

struct node

{

 int data;

 struct node *next;

};

struct node *head = NULL;

2. Create a new node

void addLast(struct node **head, int val)

{

 //create a new node

 struct node *newNode = malloc(sizeof(struct node));

 newNode->data = val;

 newNode->next = NULL;

}

3. If the head node is NULL, make the new node as head

void addLast(struct node **head, int val)

{

 //create a new node

 struct node *newNode = malloc(sizeof(struct node));

 newNode->data = val;

 newNode->next = NULL;

 //if head is NULL, it is an empty list

 if(*head == NULL)

 *head = newNode;

24

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

}

4. Otherwise, find the last node and set last node => new node

The last node of a linked list has the reference pointer as NULL. i.e. node=>next = NULL.

To find the last node, we have to iterate the linked till the node=>next != NULL

while(node->next != NULL)

{

 node = node->next;

}

After that, we have to make the last node-> next as the new node. i.e. last node->next = new

node;

Example

Insert data 10.

The head is NULL initially.

1. The new node with data as 10 and reference is NULL (address 1024).

2. Since it is the first node, make the head node points to the newly allocated node.

Insert data 20.

1. The head points to the memory address 1024 and it is the last node.

25

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

2. The new node with data as 20 and reference is NULL (address 2024).

set last node =>next = new node. The new node added at the end of the linked list.

3. Finally, the new linked list.

Implementation of inserting a node at the end of a linked list

#include<stdio.h>

#include<stdlib.h>

struct node

{

int data;

struct node *next;

};

void addLast(struct node *head, int val)

{

//create a new node

struct node *newNode = malloc(sizeof(struct node));

newNode->data = val;

26

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

newNode->next = NULL;

//if head is NULL, it is an empty list

if(*head == NULL)

*head = newNode;

//Otherwise, find the last node and add the newNode

else

{

struct node *lastNode = *head;

//last node's next address will be NULL.

while(lastNode->next != NULL)

{

lastNode = lastNode->next;

}

//add the newNode at the end of the linked list

lastNode->next = newNode;

}}

void printList(struct node *head)

{

struct node *temp = head;

//iterate the entire linked list and print the data

while(temp != NULL)

{

27

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

printf("%d->", temp->data);

temp = temp->next;

}

printf("NULL\n");

}

int main()

{

struct node *head = NULL;

addLast(&head,10);

addLast(&head,20);

printList(head);

return 0;

}

Searching a node in singly linked list

Check whether the given key is present or not in the linked list.

Example

Linked List : 10 20 30 40 NULL.

Input

20

Output

Search Found

Algorithm

1. Iterate the linked list using a loop.

2. If any node has the given key value, return 1.

28

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

3. If the program execution comes out of the loop (the given key is not present in the linked list),

return -1.

Search Found => return 1.

Search Not Found => return -1.

1. Iterate the linked list using a loop.

int searchNode(struct node *head, int key)

{

 struct node *temp = head;

 while(temp != NULL)

 {

 temp = temp->next;

 }

}

2. Return 1 on search found

int searchNode(struct node *head, int key)

{

 struct node *temp = head;

 while(temp != NULL)

 {

 if(temp->data == key)

 return 1;

 temp = temp->next;

 }

}

3. Return -1 on search not found

int searchNode(struct node *head, int key)

29

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

{

 struct node *temp = head;

 while(temp != NULL)

 {

 if(temp->data == key)

 return 1;

 temp = temp->next;

 }

 return -1;

}

Example

Linked List : 10 20 30 NULL

Key : 100

Steps:

1. temp->data = 10. key = 100. temp->data != key. Hence move the temp variable to the next

node.

2. temp->data = 20. key = 100. temp->data != key. Hence move the temp variable to the next

node.

3. temp->data = 30. key = 100. temp->data != key. Hence move the temp variable to the next

node which is NULL.

4. Finally, the program execution will come out of the loop. So, it will return -1.

"Search Not Found".

30

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

s

Implementation of searching a node in singly linked list

#include<stdio.h>

#include<stdlib.h>

struct node

{

 int data;

 struct node *next;

};

31

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

void addLast(struct node **head, int val)

{

 //create a new node

 struct node *newNode = malloc(sizeof(struct node));

 newNode->data = val;

 newNode->next = NULL;

 //if head is NULL, it is an empty list

 if(*head == NULL)

 *head = newNode;

 //Otherwise, find the last node and add the newNode

 else

 {

 struct node *lastNode = *head;

 //last node's next address will be NULL.

 while(lastNode->next != NULL)

 {

 lastNode = lastNode->next;

 }

 //add the newNode at the end of the linked list

 lastNode->next = newNode;

 }

32

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

}

int searchNode(struct node *head,int key)

{

 struct node *temp = head;

 //iterate the entire linked list and print the data

 while(temp != NULL)

 {

 //key found return 1.

 if(temp->data == key)

 return 1;

 temp = temp->next;

 }

 //key not found

 return -1;

}

int main()

{

 struct node *head = NULL;

 addLast(&head,10);

 addLast(&head,20);

 addLast(&head,30);

 //change the key and try it yourself.

33

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

 if(searchNode(head,20) == 1)

 printf("Search Found\n");

 else

 printf("Search Not Found\n");

 return 0;

}

Deleting a node in linked list

Delete a given node from the linked list.

Example

Linked List : 10 20 30 NULL

Input

20

Output

10 30 NULL

Algorithm

1. If the head node has the given key, make the head node points to the second node and free its

memory.

2. Otherwise,

 From the current node, check whether the next node has the given key

 If yes, make the current->next = current->next->next and free the memory. Else, update the

current node to the next and do the above process (from step 2) till the last node.

1. Head node has the given key

void deleteNode(struct node **head, int key)

{

 //temp is used to freeing the memory

 struct node *temp;

 //key found on the head node.

34

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

 //move to head node to the next and free the head.

 if(*head->data == key)

 {

 temp = *head; //backup the head to free its memory

 *head = (*head)->next;

 free(temp);

 } }

1. Make the head points to the next node.

2. Free the head node's memory.

3. Finally, the new linked list.

2. For other nodes (Non-Head)

35

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

void deleteNode(struct node **head, int key)

{ //temp is used to freeing the memory

 struct node *temp;

 //key found on the head node.

 //move to head node to the next and free the head.

 if((*head)->data == key)

 {

 temp = *head; //backup to free the memory

 *head = (*head)->next;

 free(temp);

 }

 else

 {

 struct node *current = *head;

 while(current->next != NULL)

 {

 //if yes, we need to delete the current->next node

 if(current->next->data == key)

 {

 temp = current->next;

 //node will be disconnected from the linked list.

 current->next = current->next->next;

 free(temp);

 break;

 }

36

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

 //Otherwise, move the current node and proceed

 else

 current = current->next;

 } }}

Let's delete data 20.

1. Make the current node points to the head node. (current => data = 10).

2. current => next. (current=>next=>data = 20).

3. current => next => next. (current=>next=>next=>data = 30).

4. We have to remove the node 20. Since current => next = 20 we can remove the node by

setting current => next = current =>next => next. And then free the node.

5. Finally, the new linked list.

Implementation of deleting a node in linked list

37

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

Example

#include<stdio.h>

#include<stdlib.h>

struct node

{

 int data;

 struct node *next;

};

void addLast(struct node **head, int val)

{

 //create a new node

 struct node *newNode = malloc(sizeof(struct node));

 newNode->data = val;

 newNode->next = NULL;

 //if head is NULL, it is an empty list

 if(*head == NULL)

 *head = newNode;

 //Otherwise, find the last node and add the newNode

 else

 {

 struct node *lastNode = *head;

 //last node's next address will be NULL.

 while(lastNode->next != NULL)

 {

 lastNode = lastNode->next;

38

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

 }

 //add the newNode at the end of the linked list

 lastNode->next = newNode;

 }}

void deleteNode(struct node **head, int key)

{

 //temp is used to freeing the memory

 struct node *temp;

 //key found on the head node.

 //move to head node to the next and free the head.

 if((*head)->data == key)

 {

 temp = *head; //backup to free the memory

 *head = (*head)->next;

 free(temp);

 }

 else

 {

 struct node *current = *head;

 while(current->next != NULL)

 {

 //if yes, we need to delete the current->next node

 if(current->next->data == key)

 {

 temp = current->next;

39

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

 //node will be disconnected from the linked list.

 current->next = current->next->next;

 free(temp);

 break;

 }

 //Otherwise, move the current node and proceed

 else

 current = current->next;

 }}}

void printList(struct node *head)

{

 struct node *temp = head;

 //iterate the entire linked list and print the data

 while(temp != NULL)

 {

 printf("%d ->", temp->data);

 temp = temp->next;

 }

 printf("NULL\n");

}

int main()

{ struct node *head = NULL;

 addLast(&head,10);

 addLast(&head,20);

40

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

 addLast(&head,30);

 printf("Linked List Elements:\n");

 printList(head);

 //delete first node

 deleteNode(&head,10);

 printf("Deleted 10. The New Linked List:\n");

 printList(head);

 //delete last node

 deleteNode(&head,30);

 printf("Deleted 30. The New Linked List:\n");

 printList(head);

 //delete 20

 deleteNode(&head,20);

 printf("Deleted 20. The New Linked List:\n");

 printList(head);

 return 0;

}

Advantage of Singly Linked list:-

1) Insertions and Deletions can be done easily.

2) It does not need movement of elements for insertion and deletion.

3) It space is not wasted as we can get space according to our requirements.

4) Its size is not fixed.

5) It can be extended or reduced according to requirements.

6) Elements may or may not be stored in consecutive memory available; even then we can store

the data in computer.

41

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

7) It is less expensive.

Disadvantage of Singly Linked list:-

1) It requires more space as pointers are also stored with information.

2) Different amount of time is required to access each element.

3) If we have to go to a particular element then we have to go through all those elements that

come before that element.

4) We cannot traverse it from last & only from the beginning.

5) It is not easy to sort the elements stored in the linear linked list.

Applications of Singly Linked list:-

 One of the applications of singly linked list is in applications like a photo viewer, for

watching similar photos in a continuous manner in the form of a slide show.

 Strategy for file allocation schemes by Operating System. Singly Linked List can be used

to keep track of free space in the secondary disk. All the free spaces can be linked

together

1.4.2 DOUBLY LINKED LIST

A Doubly Linked List is a unique type of Data Structure where there are a chain of nodes, that

are connected to one another using pointers, where any individual node has 3 components –

Data

Previous Pointer

Next Pointer

For any node, its previous pointer contains the address of the previous node and the next pointer

contains the address of the next node in the chain of nodes.

Components in a Doubly Linked List Program in C

For writing the Doubly Linked List Program in C we need to know that Doubly Linked List

generally has the following components –

 Node – A single unit in Doubly Linked List (DLL) contains – Data, previous and next

pointers.

 Next Pointer – Contains the Address to the next node

42

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

 Previous Pointer – Contains Addresses to the previous node

 Data – Stores the data value

 Head – The first node in DLL

Some variations of DLL also have a tail node pointer, which signifies that this node is the end

node in DLL.

The next pointer of the last node points to NULL and previous pointer of the first node

points to NULL as well

Why doubly linked list?

For Doubly Linked list in Data Structure in C, unlike singly Linked List, which only traverses in

one direction, Doubly Linked List can traverse both in forwards and backwards direction.

As for any given node, we have both previous and next node addresses information available.

Syntax for creating a node

struct Node {

 int data;

 struct Node *next;

 struct Node *prev;};

Insertion operation in doubly linked list

Following insertion operation can be performed on a doubly linked list.

1. Insertion at beginning

2. Insertion at end

43

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

3. Insertion in between of nodes

Doubly Linked List Insertion at Beginning

Algorithm of insertion at the beginning

 Create a new node

 Assign its data value

 Assign newly created node’s next ptr to current head reference. So, it points to the

previous start node of the linked list address

 Assign newly created node’s previous node to NULL

 Assign the current head’s previous node to this new node

 Change the head reference to the new node’s address.

Code (Insertion at Beginning)

#include<stdio.h>

#include<stdlib.h>

struct Node {

 int data;

 struct Node *next;

 struct Node *prev;

};

44

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

void insertStart(struct Node** head, int data){

 // creating memory for newNode

 struct Node* newNode = (struct Node*) malloc(sizeof(struct Node));

 // assigning newNode's next as the current head

 // Assign data & and make newNode's prev as NULL

 newNode->data = data;

 newNode->next = *head;

 newNode->prev = NULL;

 // if list already had item(s)

 // We need to make current head previous node as this new node

 if(*head != NULL)

 (*head)->prev = newNode;

 // change head to this newNode

 *head = newNode;

}

void display(struct Node* node)

{

 struct Node* end;

 printf("\nIn Forward Direction\n");

 while (node != NULL) {

 printf(" %d ", node->data);

 end = node;

 node = node->next;

 }

 printf("\nIn Backward direction \n");

45

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

 while (end != NULL) {

 printf(" %d ", end->data);

 end = end->prev;

 }

}

int main()

{

 struct Node* head = NULL;

 // Need '&' i.e. address as we need to change head

 insertStart(&head,1);

 insertStart(&head,2);

 insertStart(&head,3);

 // no need for '&' as head need not be changed

 // only doing traversal

 display(head);

 return 0;

}

Output

In Forward Direction

 3 2 1

In Backward direction

 1 2 3

Doubly Linked List Insertion at the end

Algorithm of insertion at the beginning

 Create a new node

46

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

 Assign its data value

 Traverse till the end of the Linked List call this node temp

 Assign newly created node’s next node to NULL

 Assign newly created node’s previous node to temp

 Assign Temp’s next node to this newly created node.

Code in C (Insertion at the End)

#include<stdio.h>

#include<stdlib.h>

struct Node {

 int data;

 struct Node *next;

 struct Node *prev;

};

void insertStart(struct Node** head, int data){

 // creating memory for newNode

 struct Node* newNode = (struct Node*) malloc(sizeof(struct Node));

 // assigning newNode's next as the current head

 // Assign data & and make newNode's prev as NULL

47

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

 newNode->data = data;

 newNode->next = *head;

 newNode->prev = NULL;

 // if list already had item(s)

 // We need to make current head previous node as this new node

 if(*head != NULL)

 (*head)->prev = newNode;

 // change head to this newNode

 *head = newNode;

}

void insertLast(struct Node** head, int data){

 struct Node* newNode = (struct Node*) malloc(sizeof(struct Node));

 newNode->data = data;

 newNode->next = NULL;

 //need this if there is no node present in linked list at all

 if(*head==NULL){

 *head = newNode;

 newNode->prev = NULL;

 return;

 }

 struct Node* temp = *head;

 // traverse till the last node

 while(temp->next!=NULL)

 temp = temp->next;

48

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

 // assign last node's next to this new Node

 temp->next = newNode;

 // assign this new Node's previous to last node(temp)

 newNode->prev = temp;

}

void display(struct Node* node)

{

 struct Node* end;

 printf("\nIn Forward Direction\n");

 while (node != NULL) {

 printf(" %d ", node->data);

 end = node;

 node = node->next;

 }

 printf("\nIn Backward direction \n");

 while (end != NULL) {

 printf(" %d ", end->data);

 end = end->prev;

 }

}

int main()

{

 struct Node* head = NULL;

 // Need '&' i.e. address as we need to change head

 insertStart(&head,1);

49

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

 insertStart(&head,2);

 insertStart(&head,3);

 insertLast(&head,10);

 insertLast(&head,20);

 // no need for '&' as head need not be changed

 // only doing traversal

 display(head);

 return 0;

}

Output

In Forward Direction

 3 2 1 10 20

In Backward direction

20 10 1 2 3

Doubly Linked List Insertion after a position

Algorithm of insertion at the beginning

 Create a new node

 Assign its data value

 Traverse till nth(pos) node let’s call this temp

 Assign newly created node’s next node to temp’s next node

 Assign newly created node’s previous node to temp

 Assign Temp’s next node to this newly created node.

50

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

Code in C (Insertion After a certain Position)

Run

#include<stdio.h>

#include<stdlib.h>

struct Node {

 int data;

 struct Node *next;

 struct Node *prev;

};

void insertStart(struct Node** head, int data){

 // creating memory for newNode

 struct Node* newNode = (struct Node*) malloc(sizeof(struct Node));

 // assigning newNode's next as the current head

 // Assign data & and make newNode's prev as NULL

 newNode->data = data;

 newNode->next = *head;

 newNode->prev = NULL;

 // if list already had item(s)

51

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

 // We need to make current head previous node as this new node

 if(*head != NULL)

 (*head)->prev = newNode;

 // change head to this newNode

 *head = newNode;

}

void insertLast(struct Node** head, int data){

 struct Node* newNode = (struct Node*) malloc(sizeof(struct Node));

 newNode->data = data;

 newNode->next = NULL;

 //need this if there is no node present in linked list at all

 if(*head==NULL){

 *head = newNode;

 newNode->prev = NULL;

 return;

 }

 struct Node* temp = *head;

 // traverse till the last node

 while(temp->next!=NULL)

 temp = temp->next;

 // assign last node's next to this new Node

 temp->next = newNode;

 // assign this new Node's previous to last node(temp)

52

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

 newNode->prev = temp;

}

int calcSize(struct Node* node){

 int size=0;

 while(node!=NULL){

 node = node->next;

 size++;

 }

 return size;

}

void insertPosition(int pos, int data, struct Node** head){

 int size = calcSize(*head);

 //If pos is 0 then should use insertStart method

 //If pos is less than 0 then can't enter at all

 //If pos is greater than size then bufferbound issue

 if(pos<1 || size < pos)

 {

 printf("Can't insert, %d is not a valid position\n",pos);

 }

 else{

 struct Node* temp = *head;

 struct Node* newNode = (struct Node*) malloc(sizeof(struct Node));

 newNode->data = data;

 newNode->next = NULL;

53

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

 // traverse till pos

 while(--pos)

 {

 temp=temp->next;

 }

 // assign prev/next of this new node

 newNode->next = temp->next;

 newNode->prev = temp;

 // change next of temp node

 temp->next = newNode;

 }

}

void display(struct Node* node)

{

 struct Node* end;

 printf("\nIn Forward Direction\n");

 while (node != NULL) {

 printf("%d ", node->data);

 end = node;

 node = node->next;

 }

 printf("\n\nIn Backward direction \n");

 while (end != NULL) {

 printf("%d ", end->data);

54

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

 end = end->prev;

 }

}

int main()

{

 struct Node* head = NULL;

 // Need '&' i.e. address as we need to change head

 insertStart(&head,1);

 insertStart(&head,2);

 insertStart(&head,3);

 insertLast(&head,10);

 insertLast(&head,20);

 insertPosition(2, 100, &head);

 // no need for '&' as head need not be changed

 // only doing traversal

 display(head);

 return 0;

}

Output

In Forward Direction

3 2 100 1 10 20

In Backward direction

20 10 1 2 3

55

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

Deletion in a Doubly Linked List

In a doubly linked list, we need to delete a node from the linked list. we just need to copy the

head pointer to pointer ptr and shift the head pointer to its next.

So when we want to delete the node in the doubly linked list we have three ways to delete the

node in another position.

 Deletion at beginning

 Deletion at middle

 Deletion at last

In Disadvantages, Doubly linked list occupy more space and often more operations are required

for the similar tasks as compared to singly linked lists.

It is easy to reverse the linked list.

If we are at a node, then we can go to any node. But in linear linked list, it is not possible to

reach the previous node.

Deletion at Beginning

Algorithm

 Check if there is only 1 node or not

 If there is one node

o Assign head to NULL

o Free memory

 Else

o Assign head to next node in the list

o Assign head->prev to NULL

o Free memory

56

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

Deletion at middle

Algorithm

 Traverse till the target node

 create a node called the previous storing previous node of the target node

 Assign previous node’s next pointer to the next node of the target node

 For the next node of the target node, its previous pointer is assigned to the targets node’s

previous node’s address

 Free memory of target node

Deletion at last

 Traverse till the target node

 Check if this is the last node i.e. if node->next = NULL, then its last node

 Assign last node’s previous node’s next pointer to the last node’s next node’s address,

which basically is NULL in this case

 Free the memory

57

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

Code for Deletion in a Doubly Linked List

#include <stdio.h>

#include <stdlib.h>

struct Node{

 int data;

 struct Node *next;

 struct Node *prev;

};

int getLength(struct Node* node);

void insert(struct Node** head, int data){

 struct Node* freshNode = (struct Node*) malloc(sizeof(struct Node));

 freshNode->data = data;

 freshNode->next = *head;

 freshNode->prev = NULL;

 // If the linked list already had atleast 1 node

58

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

 if(*head !=NULL)

 (*head)->prev = freshNode;

 // freshNode will become head

 *head = freshNode;

}

void deleteFront(struct Node** head)

{

 struct Node* tempNode = *head;

 // if DLL is empty

 if(*head == NULL){

 printf("Linked List Empty, nothing to delete\n");

 return;

 }

 // if Linked List has only 1 node

 if(tempNode->next == NULL){

 printf("%d deleted\n", tempNode->data);

 *head = NULL;

 return;

 }

 // move head to next node

59

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

 *head = (*head)->next;

 // assign head node's previous to NULL

 (*head)->prev = NULL;

 printf("%d deleted\n", tempNode->data);

 free(tempNode);

}

void deleteEnd(struct Node** head){

 struct Node* tempNode = *head;

 // if DLL is empty

 if(*head == NULL){

 printf("Linked List Empty, nothing to delete\n");

 return;

 }

 // if Linked List has only 1 node

 if(tempNode->next == NULL){

 printf("%d deleted\n", tempNode->data);

 *head = NULL;

 return;

 }

 // else traverse to the last node

60

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

 while (tempNode->next != NULL)

 tempNode = tempNode->next;

 struct Node* secondLast = tempNode->prev;

 // Curr assign 2nd last node's next to Null

 secondLast->next = NULL;

 printf("%d deleted\n", tempNode->data);

 free(tempNode);

}

void deleteNthNode(struct Node** head, int n){

 //if the head node itself needs to be deleted

 int len = getLength(*head);

 // not valid

 if(n < 1 || n > len){

 printf("Enter valid position\n");

 return;

 }

 // delete the first node

 if(n == 1){

 deleteFront(head);

61

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

 return;

 }

 if(n == len){

 deleteEnd(head);

 return;

 }

 struct Node* tempNode = *head;

 // traverse to the nth node

 while (--n){

 tempNode = tempNode->next;

 }

 struct Node* previousNode = tempNode->prev; // (n-1)th node

 struct Node* nextNode = tempNode->next; // (n+1)th node

 // assigning (n-1)th node's next pointer to (n+1)th node

 previousNode->next = tempNode->next;

 // assigning (n+1)th node's previous pointer to (n-1)th node

 nextNode->prev = tempNode->prev;

 // deleting nth node

62

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

 printf("%d deleted \n", tempNode->data);

 free(tempNode);

}

// required for deleteNthNode

int getLength(struct Node* node){

 int len = 0;

 while(node!=NULL){

 node = node->next;

 len++;

 }

 return len;

}

//function to print the doubly linked list

void display(struct Node* node)

{

 struct Node *end = NULL;

 printf("List in Forward direction: ");

 while (node != NULL) {

 printf(" %d ", node->data);

 end = node;

63

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

 node = node->next;

 }

 printf("\nList in backward direction:");

 while (end != NULL) {

 printf(" %d ", end->data);

 end = end->prev;

 }

 printf("\n\n");

}

int main()

{

 struct Node* head = NULL;

 insert(&head,7);

 insert(&head,8);

 insert(&head,9);

 insert(&head,10);

 insert(&head,11);

 insert(&head,12);

 display(head);

64

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

 deleteFront(&head);

 display(head);

 deleteEnd(&head);

 display(head);

 // delete 3rd node

 deleteNthNode(&head, 3);

 display(head);

 // delete 1st node

 deleteNthNode(&head, 1);

 display(head);

 // delete 1st node

 deleteEnd(&head);

 display(head);

 return 0;

}

Output

List in Forward direction: 12 11 10 9 8 7

List in backward direction: 7 8 9 10 11 12

12 deleted

65

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

List in Forward direction: 11 10 9 8 7

List in backward direction: 7 8 9 10 11

7 deleted

List in Forward direction: 11 10 9 8

List in backward direction: 8 9 10 11

9 deleted

List in Forward direction: 11 10 8

List in backward direction: 8 10 11

11 deleted

List in Forward direction: 10 8

List in backward direction: 8 10

8 deleted

List in Forward direction: 10

List in backward direction: 10

Advantages of using doubly linked list in C

 It saves time as we can traverse in both directions.

 It utilizes memory as we can construct and delete nodes according to our needs.

 Insertion and deletion of the node become efficient if the position is given.

Disadvantages of using doubly linked list in C

 Uses more memory per node.

 Insertion and deletion take more time because extra pointers need to be maintained

Applications

66

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

 It is used in the navigation systems where front and back navigation is required.

 It is used by the browser to implement backward and forward navigation of visited web

pages that is a back and forward button.

 It is also used to represent a classic game deck of cards.

1.4.3 Circular Linked Lists

A Circular Linked List is a collection of elements connected together with the help of pointers.

Each node contains a data value and addresses to the next node in the link where the last link of

the circular Linked list has the address of the first node.

Why circular linked list?

Circular Linked List is used when we continuously access the same items in a loop. Whenever

we reach the last node we can restart operations again by directly reaching the first node from the

last node itself.

Types:

The circular linked list is also two types.

 Singly linked list

In a singly circular linked list, the address of the last node’s next pointer rather than being

NULL is pointed towards the address of the head node.

 Doubly linked list

Similarly, in a doubly linked list, in addition to the address of the last node’s next pointer

being the address of head node. The previous pointer of the head node is provided to the

address of the last node.

67

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

O

In a circular linked list, we perform the following operations...

1. Insertion

2. Deletion

3. Display

Before we implement actual operations, first we need to setup empty list. First perform the

following steps before implementing actual operations.

 Step 1 - Include all the header files which are used in the program.

 Step 2 - Declare all the user defined functions.

 Step 3 - Define a Node structure with two members data and next

 Step 4 - Define a Node pointer 'head' and set it to NULL.

 Step 5 - Implement the main method by displaying operations menu and make suitable

function calls in the main method to perform user selected operation.

Insertion

In a circular linked list, the insertion operation can be performed in three ways. They are as

follows...

1. Inserting At Beginning of the list

2. Inserting At End of the list

3. Inserting At Specific location in the list

Inserting At Beginning of the list

We can use the following steps to insert a new node at beginning of the circular linked list...

 Step 1 - Create a newNode with given value.

 Step 2 - Check whether list is Empty (head == NULL)

 Step 3 - If it is Empty then, set head = newNode and newNode→next = head.

 Step 4 - If it is Not Empty then, define a Node pointer 'temp' and initialize with 'head'.

 Step 5 - Keep moving the 'temp' to its next node until it reaches to the last node (until

'temp → next == head').

 Step 6 - Set 'newNode → next =head', 'head = newNode' and 'temp → next = head'.

68

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

Inserting At End of the list

We can use the following steps to insert a new node at end of the circular linked list...

 Step 1 - Create a newNode with given value.

69

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

 Step 2 - Check whether list is Empty (head == NULL).

 Step 3 - If it is Empty then, set head = newNode and newNode → next = head.

 Step 4 - If it is Not Empty then, define a node pointer temp and initialize with head.

 Step 5 - Keep moving the temp to its next node until it reaches to the last node in the list

(until temp → next == head).

 Step 6 - Set temp → next = newNode and newNode → next = head.

70

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

Inserting At Specific location in the list (After a Node)

We can use the following steps to insert a new node after a node in the circular linked list...

 Step 1 - Create a newNode with given value.

 Step 2 - Check whether list is Empty (head == NULL)

 Step 3 - If it is Empty then, set head = newNode and newNode → next = head.

 Step 4 - If it is Not Empty then, define a node pointer temp and initialize with head.

 Step 5 - Keep moving the temp to its next node until it reaches to the node after which

we want to insert the newNode (until temp1 → data is equal to location, here location is

the node value after which we want to insert the newNode).

 Step 6 - Every time check whether temp is reached to the last node or not. If it is reached

to last node then display 'Given node is not found in the list!!! Insertion not

possible!!!' and terminate the function. Otherwise move the temp to next node.

 Step 7 - If temp is reached to the exact node after which we want to insert the newNode

then check whether it is last node (temp → next == head).

 Step 8 - If temp is last node then set temp → next = newNode and newNode →

next = head.

 Step 8 - If temp is not last node then set newNode → next = temp → next and temp →

next = newNode.

71

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

72

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

Deletion

In a circular linked list, the deletion operation can be performed in three ways those are as

follows.

1. Deleting from Beginning of the list

2. Deleting from End of the list

3. Deleting a Specific Node

Deleting from Beginning of the list

We can use the following steps to delete a node from beginning of the circular linked list...

 Step 1 - Check whether list is Empty (head == NULL)

 Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not possible' and

terminate the function.

 Step 3 - If it is Not Empty then, define two Node pointers 'temp1' and 'temp2' and

initialize both 'temp1' and 'temp2' with head.

 Step 4 - Check whether list is having only one node (temp1 → next == head)

 Step 5 - If it is TRUE then set head = NULL and delete temp1 (Setting Empty list

conditions)

 Step 6 - If it is FALSE move the temp1 until it reaches to the last node. (until temp1 →

next == head)

 Step 7 - Then set head = temp2 → next, temp1 → next = head and delete temp2.

73

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

Deleting from End of the list

We can use the following steps to delete a node from end of the circular linked list...

 Step 1 - Check whether list is Empty (head == NULL)

 Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not possible' and

terminate the function.

 Step 3 - If it is Not Empty then, define two Node pointers 'temp1' and 'temp2' and

initialize 'temp1' with head.

 Step 4 - Check whether list has only one Node (temp1 → next == head)

 Step 5 - If it is TRUE. Then, set head = NULL and delete temp1. And terminate from

the function. (Setting Empty list condition)

 Step 6 - If it is FALSE. Then, set 'temp2 = temp1 ' and move temp1 to its next node.

Repeat the same until temp1 reaches to the last node in the list. (until temp1 →

next == head)

 Step 7 - Set temp2 → next = head and delete temp1.

74

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

Deleting a Specific Node from the list

We can use the following steps to delete a specific node from the circular linked list...

 Step 1 - Check whether list is Empty (head == NULL)

 Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not possible' and

terminate the function.

 Step 3 - If it is Not Empty then, define two Node pointers 'temp1' and 'temp2' and

initialize 'temp1' with head.

 Step 4 - Keep moving the temp1 until it reaches to the exact node to be deleted or to the

last node. And every time set 'temp2 = temp1' before moving the 'temp1' to its next

node.

75

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

 Step 5 - If it is reached to the last node then display 'Given node not found in the list!

Deletion not possible!!!'. And terminate the function.

 Step 6 - If it is reached to the exact node which we want to delete, then check whether list

is having only one node (temp1 → next == head)

 Step 7 - If list has only one node and that is the node to be deleted then

set head = NULL and delete temp1 (free(temp1)).

 Step 8 - If list contains multiple nodes then check whether temp1 is the first node in the

list (temp1 == head).

 Step 9 - If temp1 is the first node then set temp2 = head and keep moving temp2 to its

next node until temp2 reaches to the last node. Then set head = head → next, temp2 →

next = head and delete temp1.

 Step 10 - If temp1 is not first node then check whether it is last node in the list (temp1 →

next == head).

 Step 1 1- If temp1 is last node then set temp2 → next = head and

delete temp1 (free(temp1)).

 Step 12 - If temp1 is not first node and not last node then set temp2 → next = temp1 →

next and delete temp1 (free(temp1)).

76

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

Displaying a circular Linked List

We can use the following steps to display the elements of a circular linked list...

 Step 1 - Check whether list is Empty (head == NULL)

 Step 2 - If it is Empty, then display 'List is Empty!!!' and terminate the function.

 Step 3 - If it is Not Empty then, define a Node pointer 'temp' and initialize with head.

 Step 4 - Keep displaying temp → data with an arrow (--->) until temp reaches to the last

node

 Step 5 - Finally display temp → data with arrow pointing to head → data.

Implementation of Circular Linked List using C Programming

#include<stdio.h>

#include<conio.h>

void insertAtBeginning(int);

void insertAtEnd(int);

void insertAtAfter(int,int);

void deleteBeginning();

void deleteEnd();

void deleteSpecific(int);

void display();

struct Node

{

 int data;

77

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

 struct Node *next;

}*head = NULL;

void main()

{

 int choice1, choice2, value, location;

 clrscr();

 while(1)

 {

 printf("\n*********** MENU *************\n");

 printf("1. Insert\n2. Delete\n3. Display\n4. Exit\nEnter your choice: ");

 scanf("%d",&choice1);

 switch()

 {

 case 1: printf("Enter the value to be inserted: ");

 scanf("%d",&value);

 while(1)

 {

 printf("\nSelect from the following Inserting options\n");

 printf("1. At Beginning\n2. At End\n3. After a Node\n4. Cancel\nEnter your c

hoice: ");

 scanf("%d",&choice2);

 switch(choice2)

 {

 case 1: insertAtBeginning(value);

 break;

 case 2: insertAtEnd(value);

 break;

 case 3: printf("Enter the location after which you want to insert: ");

 scanf("%d",&location);

 insertAfter(value,location);

 break;

 case 4: goto EndSwitch;

78

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

 default: printf("\nPlease select correct Inserting option!!!\n");

 }

 }

 case 2: while(1)

 {

 printf("\nSelect from the following Deleting options\n");

 printf("1. At Beginning\n2. At End\n3. Specific Node\n4. Cancel\nEnter your

choice: ");

 scanf("%d",&choice2);

 switch(choice2)

 {

 case 1: deleteBeginning();

 break;

 case 2: deleteEnd();

 break;

 case 3: printf("Enter the Node value to be deleted: ");

 scanf("%d",&location);

 deleteSpecic(location);

 break;

 case 4: goto EndSwitch;

 default: printf("\nPlease select correct Deleting option!!!\n");

 }

 }

 EndSwitch: break;

 case 3: display();

 break;

 case 4: exit(0);

 default: printf("\nPlease select correct option!!!");

 }

 }

}

void insertAtBeginning(int value)

79

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

{

 struct Node *newNode;

 newNode = (struct Node*)malloc(sizeof(struct Node));

 newNode -> data = value;

 if(head == NULL)

 {

 head = newNode;

 newNode -> next = head;

 }

 else

 {

 struct Node *temp = head;

 while(temp -> next != head)

 temp = temp -> next;

 newNode -> next = head;

 head = newNode;

 temp -> next = head;

 }

 printf("\nInsertion success!!!");

}

void insertAtEnd(int value)

{

 struct Node *newNode;

 newNode = (struct Node*)malloc(sizeof(struct Node));

 newNode -> data = value;

 if(head == NULL)

 {

 head = newNode;

 newNode -> next = head;

 }

 else

 {

 struct Node *temp = head;

80

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

 while(temp -> next != head)

 temp = temp -> next;

 temp -> next = newNode;

 newNode -> next = head;

 }

 printf("\nInsertion success!!!");

}

void insertAfter(int value, int location)

{

 struct Node *newNode;

 newNode = (struct Node*)malloc(sizeof(struct Node));

 newNode -> data = value;

 if(head == NULL)

 {

 head = newNode;

 newNode -> next = head;

 }

 else

 {

 struct Node *temp = head;

 while(temp -> data != location)

 {

 if(temp -> next == head)

 {

 printf("Given node is not found in the list!!!");

 goto EndFunction;

 }

 else

 {

 temp = temp -> next;

 }

 }

 newNode -> next = temp -> next;

81

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

 temp -> next = newNode;

 printf("\nInsertion success!!!");

 }

 EndFunction:

}

void deleteBeginning()

{

 if(head == NULL)

 printf("List is Empty!!! Deletion not possible!!!");

 else

 {

 struct Node *temp = head;

 if(temp -> next == head)

 {

 head = NULL;

 free(temp);

 }

 else{

 head = head -> next;

 free(temp);

 }

 printf("\nDeletion success!!!");

 }

}

void deleteEnd()

{

 if(head == NULL)

 printf("List is Empty!!! Deletion not possible!!!");

 else

 {

 struct Node *temp1 = head, temp2;

 if(temp1 -> next == head)

 {

82

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

 head = NULL;

 free(temp1);

 }

 else{

 while(temp1 -> next != head){

 temp2 = temp1;

 temp1 = temp1 -> next;

 }

 temp2 -> next = head;

 free(temp1);

 }

 printf("\nDeletion success!!!");

 }

}

void deleteSpecific(int delValue)

{

 if(head == NULL)

 printf("List is Empty!!! Deletion not possible!!!");

 else

 {

 struct Node *temp1 = head, temp2;

 while(temp1 -> data != delValue)

 {

 if(temp1 -> next == head)

 {

 printf("\nGiven node is not found in the list!!!");

 goto FuctionEnd;

 }

 else

 {

 temp2 = temp1;

 temp1 = temp1 -> next;

 }

83

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

 }

 if(temp1 -> next == head){

 head = NULL;

 free(temp1);

 }

 else{

 if(temp1 == head)

 {

 temp2 = head;

 while(temp2 -> next != head)

 temp2 = temp2 -> next;

 head = head -> next;

 temp2 -> next = head;

 free(temp1);

 }

 else

 {

 if(temp1 -> next == head)

 {

 temp2 -> next = head;

 }

 else

 {

 temp2 -> next = temp1 -> next;

 }

 free(temp1);

 }

 }

 printf("\nDeletion success!!!");

 }

 FuctionEnd:

}

void display()

84

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

{

 if(head == NULL)

 printf("\nList is Empty!!!");

 else

 {

 struct Node *temp = head;

 printf("\nList elements are: \n");

 while(temp -> next != head)

 {

 printf("%d ---> ",temp -> data);

 }

 printf("%d ---> %d", temp -> data, head -> data);

 }

}

Advantage of circular linked list

 Entire list can be traversed from any node of the list.

 It saves time when we have to go to the first node from the last node.

 Its is used for the implementation of queue.

 Reference to previous node can easily be found.

 When we want a list to be accessed in a circle or loops then circular linked list are used.

Disadvantage of circular linked list

 Circular list are complex as compared to singly linked lists.

 Reversing of circular list is a complex as compared to singly or doubly lists.

 If not traversed carefully, then we could end up in an infinite loop.

 Like singly and doubly lists circular linked lists also doesn’t support direct accessing of

elements.

Applications of Circular Linked List

A Circular Linked List can be used for the following –

85

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

 Circular lists are used in applications where the entire list is accessed one-by-one in a

loop.

 It is also used by the Operating system to share time for different users, generally uses a

Round-Robin time-sharing mechanism.

 Multiplayer games use a circular list to swap between players in a loop.

 Implementation of Advanced data structures like Fibonacci Heap

 The browser cache which allows you to hit the BACK button

 Undo functionality in Photoshop or Word

 Circular linked lists are used in Round Robin Scheduling

 Circular linked list used Most recent list (MRU LIST)

What is the benefit of a circularly linked list over singly linked list in search applications?

 If your program wants to access items of Linked List over and over again in a loop. Such

processes do exist in OS, where some list of system processes must be implemented in

loop one by one

 These are round-robin type of OS scheduling algorithms

 Any node can be the starting point since, we can access all nodes from anywhere, unlike

a singly linked list where we must only start from the head node if we want to access all

nodes.

 The fibonacci heap can be implemented via Circular Linked List

1.5 Polynomial Manipulation

Linked lists can be used to represent polynomials and the different operations that can be

performed on them

Polynomial Representation

Consider a polynomial 6x3 + 9x2 + 7x + 1. Every individual term in a polynomial consists of

two parts, a coefficient and a power. Here, 6, 9, 7, and 1 are the coefficients of the terms that

have 3, 2, 1, and 0 as their powers respectively. Every term of a polynomial can be represented

as a node of the linked list

86

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

Linked representation of a polynomial

Polynomial manipulations such as addition, subtraction & differentiation etc.. can be performed

using linked list Declaration for Linked list implementation of Polynomial ADT

struct poly

{

int coeff;

int power;

struct poly * Next;

}

*list1,*list2,*list3;

Creation of the Polynomial

poly create(poly *head, poly *newnode)

{

poly*ptr;

 if(head==NULL)

{

head=newnode;

 return(head);

}

else

{

ptr=head;

87

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

while(ptr-> next!=NULL)

 ptr=ptr->next;

ptr->next=newnode;

}

return(head);

}

Addition of Polynomials:

To add two polynomials, we need to scan them once. If we find terms with the same exponent in

the two polynomials, then we add the coefficients; otherwise, we copy the term of larger

exponent into the sum and go on. When we reach at the end of one of the polynomial, then

remaining part of the other is copied into the sum.

To add two polynomials, follow the following steps:

Read two polynomials.

Add them.

Display the resultant polynomial.

Addition of Polynomials:

void add()

{

poly *ptr1, *ptr2, *newnode;

 ptr1=list1;

ptr2=list2;

while(ptr1!=NULL && ptr2!= NULL)

{

newnode=malloc(sizeof(struct poly));

 if(ptr1->power==ptr2->power)

{

88

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

newnode->coeff = ptr1->coeff + ptr2->coeff;

 newnode->power=ptr1->power;

newnode->next=NULL;

list3=create(list3,newnode);

ptr1=ptr->next;

ptr2=ptr2->next;

}

else

{

if(ptr1->power > ptr2->power)

{

newnode->coeff = ptr1->coeff;

 newnode->power=ptr1->power;

newnode->next=NULL;

 list3=create(list3,newnode);

 ptr1=ptr1->next;

}

else

{

newnode->coeff = ptr2->coeff

newnode->power=ptr2->power;

newnode->next=NULL;

list3=create(list3,newnode);

 ptr2=ptr2->next;

}

89

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

}

}

FOR SUBTRACTION OF POLYNOMIALS,

Add this statement in the above program newnode->coeff = ptr1->coeff - ptr2->coeff

Multiplication of Polynomials:

You are given the head pointers two linked lists representing two polynomials, say head1 and

head2. Perform the multiplication of the two polynomials and return the output as a linked list.

The structure of the linked list is provided below.

Now, let's take a look at an example of the multiplication of two polynomials.

Let say we have,

 P(x) = x² − 5x + 9 and

Q(x) = x3 − 10x2 + 9x + 1

We need to find the product P(x)*Q(x).

P(x)*Q(x) = (x² − 5x + 9) * (x3 − 10x2 + 9x + 1)

Every term of P(x) will be multiplied to Q(x) in this way -

P(x)*Q(x) = x² (x3 − 10x2 + 9x + 1) - 5x(x3 − 10x2 + 9x + 1) + 9(x3−10x2+ 9x + 1)

To multiply any two terms, we multiply their coefficients and add up the exponents of the

variable.

So, we get -

P(x)*Q(x) =x5 - 10x4 + 9x3 + x2 - 5x4+50x3 -45x2 - 5x + 9x3 - 90x2 + 81x + 9

 =x5 -15x4 +68x3 -134x2 +76x +9

In this example, we found the product using the pen-paper method. Now, let's learn how to do

the same using a linked list.`

Representation of Polynomials as Linked List

This section will see how to represent polynomials using linked lists.

Each node in the linked list denotes one term of the polynomial.

Every node stores -

 Value of exponent

 Value of coefficient

 Pointer to the next node

So, the structure of the node looks like this -

90

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

Example - P(x) = x² − 5x + 9 is represented by a linked list containing 3 nodes as it has 3 terms

which are as follows -

1. Exponent = 2 and Coefficient=1

2. Exponent = 1 and Coefficient = -5

3. Exponent = 0 and Coefficient=9

Algorithm

From the previous sections, we know now how to represent a polynomial as a linked list.

So, now according to the problem statement, we have two pointers pointing to the head nodes of

the given polynomials.

The algorithm is quite simple. We only need to iterate over the two linked lists, multiply the

corresponding coefficients, and add the exponents. Let's see all the steps one by one below -

1. Define two pointers ptr1 and ptr2, which point to head1 and head2, respectively. These

pointers will be used to iterate over the two lists.

2. Define a new node head3 which points to the head node of the resulting product polynomial.

3. Multiply the terms pointed by ptr1 and ptr2.

4. Declare two variables coefficient and exponent where coefficient = ptr1->coefficient*ptr2-

>coefficient and exponent = ptr1->exponent + ptr2->exponent.

91

LINEAR STRUCTURES -LIST / 19CS304 - DATA STRUCTURES /MS.M.KANCHANA/CST/SNSCE

5. Create a new node with the coefficient and exponent found above. And append it to the list

pointed by head3.

6. Update ptr2 to point to the next node in the second polynomial and repeat the above steps

till ptr2 becomes NULL.

7. Similarly, after each complete pass over the second polynomial, reset ptr2 to point

to head2 and update ptr1 to point to the next node in the first polynomial.

	Here, we need to group two different data types (heterogeneous).
	We can use structure data type to group the different data types. So, every node in a linked list is a structure data type.
	Let's create and allocate memory for 3 nodes
	Assign values to each node
	Printing each node data in a linked list
	Why do we need to use the temp node instead head?

	Sample Linked List Implementation
	2.Create a new node with the given data.
	3.Make the new node points to the head node
	4.Make the new node as the head node
	1. Declare head pointer and make it as NULL.
	2. Create a new node
	3. If the head node is NULL, make the new node as head
	Example
	Input
	Output

	1. Iterate the linked list using a loop.
	2. Return 1 on search found
	Example (1)
	Input
	Output

	2. For other nodes (Non-Head)
	Components in a Doubly Linked List Program in C
	Doubly Linked List Insertion after a position
	Algorithm of insertion at the beginning
	Algorithm

	Why circular linked list?
	Circular Linked List is used when we continuously access the same items in a loop. Whenever we reach the last node we can restart operations again by directly reaching the first node from the last node itself.
	Types:
	O
	Insertion
	Inserting At Beginning of the list
	Inserting At End of the list
	Inserting At Specific location in the list (After a Node)
	Deletion
	Deleting from Beginning of the list
	Deleting from End of the list
	Deleting a Specific Node from the list
	Displaying a circular Linked List
	Applications of Circular Linked List

	Polynomial Representation
	Linked representation of a polynomial
	Representation of Polynomials as Linked List
	Algorithm

