

TOPIC:7-Consistency of premised and Indirect method of proof

Consistency and Inconsistency of premises

A set of formulae H., H., ... Hm is said to be in consistent if their conjunction implies contradiction.

u) H, A H₂ A ···· A H_m ⇔ F

A set of formulae H., H.,... Hm is Said to be consistent if it is not inconsistent.

① Prove that $P \rightarrow Q$, $Q \rightarrow R$, $S \rightarrow \neg R$, $P^{\Lambda S}$ are inconsistent.

V	- II	F=0.2
<i>{</i> 1 <i>}</i>	1) P→a	Rule P
{2 }	$2)$ $Q \rightarrow R$	Rule P
{1,2}	3) P→R	Rule T (P→a, a→R ⇒ P→R)
{4 }	4) S → ¬R	Rule P
{4 }	5) R → ¬S	Rul T (P→a ⇔ ¬Q→¬P)
\$1,2,4}	6) P → ¬S	Rul T (P→a, a→R ⇒ P→R)
{1,2,4}	7) 7PV75	Rule T (P→a ⇔¬PVQ)
ξ1,2,4 ζ	8) ¬(P^S)	Rule T (Demorgan's)
{9 }	q) PAS	Rule P
{1,2,4,9}	10) (PAS) A 7 (PMS)	Rule T (P, a ⇒ PAQ)

which is nothing but false value. Therefore given premises are inconsistent.

Prove that P→Q, Q→R, R→S, S→¬R

and PAS are inconsistent.

{ 1 }	1) P→Q	Rule P
{2 }	2) Q → R	Rule P
ξ1,2 ²	3) $P \rightarrow R$	Rule T (P→Q,Q→R ⇒ P→R)
{4 }	4) R → S	Rule P
ξ1,2,4 ζ	5) P→S	Rule T (P→a,a→R ⇒ P→R
\$6 3	6) S → ¬R	Rule P
{6 }	¬) R → ¬ s	Rule 7 (P→a ⇔ ¬a→
{ 6 }	8) ¬RV¬S	RW T (P→a ⇔ ¬PV
<i>{6}</i>	9) 75	Rule T (PVa ⇒ a)
{1,2,4,6}	10) ¬P	Rule T (P→Q,¬Q→¬
\$1,2,4,6}	n) ¬PV¬S	Rule T (P, Q ⇒ PVQ
ξ12°3	12) PAS	Rule P
{1,2,4,6}	13) ¬(PAS)	Rule T (Demorgan's)
\$1,2,4,6,12}	14) (PAS) *A. (PAS)	Rule T (P, a ⇒ PAB)
wich is	1992 201 100 100 100	ulse value. Therefore

Indirect Method of Proof

In order to show that a conclusion C follows logically from the premises H. H., ... Hm, we assure C is FALSE and consider -C as an additional premises If H. A H. A ... A Hm A - C is a contradiction, then C follows logically from H., H., ..., Hm.

1. Using indirect method of proof, durive $P \rightarrow 75$ from the premises $P \rightarrow (qvr)$, $q \rightarrow -P$, $S \rightarrow -r$ and P. We consider $\neg (P \rightarrow -S)$ as an additional premises $= \neg (\neg P \lor 7S) = P \land S$.

1) pas	Assumud premises
2) p -> (q vr)	Rule P
	Rule P
12 10	Rule T(P, P→a ⇒a)
5) 5	Rule T (PAQ ⇒ Q)
6) S→¬Y	Rule P
7) 77	Rule T (P, P→a ⇒ a).
	2) P→(qvr) 3) P 4) qvr 5) 5

$$\begin{cases} 2,3 \end{cases} & 8 \end{cases} \neg 9 \rightarrow Y & \text{Rule T } (P \rightarrow a \Leftrightarrow \neg P \lor 0) \end{cases}$$

$$\begin{cases} 2,3 \end{cases} & 9 \end{cases} \neg Y \rightarrow 9 & \text{Rule T } (\text{contrapositive}) \end{cases}$$

$$\begin{cases} 1,2,3,6 \end{cases} & 10) \quad 9 & \text{Rule T } (P, P \rightarrow a \Rightarrow a) \end{cases}$$

$$\begin{cases} 11 \end{cases} & 11) \quad 9 \rightarrow \neg P & \text{Rule P} \end{cases}$$

$$\begin{cases} 11,2,3,6,11 \end{cases} & 12) \quad \neg P & \text{Rule T } (P, P \rightarrow a \Rightarrow a) \end{cases}$$

$$\begin{cases} 1,2,3,6,11 \end{cases} & 13) \quad P \land \neg P & \text{Rule T } (P, Q \Rightarrow P \land Q) \end{cases}$$

which is nothing but false value. By method of contradiction, $p \rightarrow \neg S$

5 how that the following argument is valid.

"Try father praises me only if I can be proud of myself. Either I do well in sports or I cannot be proud of brintself. If study hard, then I cannot do well in sports. Therefore, if father praises me, then I do not study well."

Let A: My father praises me

B: I can be proud of myself

c: I do well in sports

D: I study hard

Thun, the premises are

 $A \rightarrow B$, $C \lor \neg B$, $D \rightarrow \neg C$

Conclusion is $A \rightarrow \neg D$

		www
\$1 \$	1) A	Assumed premises
{2 }	5) V→B	Rule P
\$1,27	3) B	Rule T (P, P→a ⇒a)
54 ²	4) C V ¬ B	Rule P
{4 }	5) B → C	Rule T (P→a ⇔¬PVa)
{1,2,4}	6) C	Rule T (P, P→a ⇒a)
ξ η ζ	7) D→7C	Rule P
ξ η ζ	8) c → ¬D	Rule T
ξ1,2,4,7}	9) ¬D	Rule $T(P, P \rightarrow a \Rightarrow Q)$
	10) A →¬D	Rule CP