

SNS COLLEGE OF ENGINEERING Coimbatore - 641 107

TOPIC:6-Problems based on inference theory of Statement Calculu

Demonstrate that R is a valid inference from premises $P \rightarrow Q$, $Q \rightarrow R$ and P.

Hiere given premises are

(1) $P \rightarrow Q$ (2) $Q \rightarrow R$ (3) P

1313	$ 1 \rangle P \rightarrow Q$	Rule P
{2}	2) P	Rule P
£1,2}	3) a	Rule T (P, $P \rightarrow Q \Rightarrow Q$)
<i>{</i> 4 <i>}</i>	4) Q→R	Rule P
{1,2,4}	5) R	Rule T (P, P→Q ⇒ a

SNS COLLEGE OF ENGINEERING Coimbatore – 641 107

show that
$$(P \rightarrow Q) \land (R \rightarrow S)$$
, $(Q \nmid M) \land (S \rightarrow N)$

$$\neg (MNN)$$
 and $(P \rightarrow R) \Rightarrow \neg P$.

Given premises are
$$(P \rightarrow Q) \wedge (R \rightarrow S)$$
, $(Q \rightarrow M) \wedge (S \rightarrow N)$, $\neg (M \wedge N)$ and $(P \rightarrow R)$

Condusion is -P.

SNS COLLEGE OF ENGINEERING Coimbatore – 641 107

Prove that the following argument is valid: $p \rightarrow \neg q$, $r \rightarrow q$, $r \rightarrow \neg p$ Given premises are $p \rightarrow \neg q$, $r \rightarrow q$, $r \rightarrow$

SNS COLLEGE OF ENGINEERING Coimbatore – 641 107

513	1) 7	Rule P
{2}	2) ~→9	Rule P
£1,2}	3) 9	Rule $T(P, P \rightarrow Q \Rightarrow Q)$
<i>{</i> 4 <i>{</i> }	4) p→¬9	Rule P
ξ1,2,4}	5) ¬P	Rul T (P→¬a,Q ⇒ ¬P)