

TOPIC:7-Consistency of premised and Indirect method of proof

Consistency and Inconsistency of premises

A set of formulae H, H2, ... Hm is said to be in consistent if their conjunction implies contradiction.

u) H1 1 H2 1 --- 1 Hm ⇔ F

A set of formulae H., H., ... Hm is Said to be consistent if it is not inconsistent.

① Prove that $P \rightarrow Q$, $Q \rightarrow R$, $S \rightarrow \neg R$, $P^{\Lambda S}$ are inconsistent.

ξ1 ?	1) P→a	Rule P
{2 }	$2)$ $Q \rightarrow R$	Rule P
ξ1,2}	3) P → R	Rule T (P→a, a→R ⇒ P→R)
{4 }	4) S → ¬R	Rule P
{4 }	5) R → ¬S	Rul T (P→a ⇔ ¬Q→¬P)
\$1,2,4}	6) P → ¬S	Rule T ($P \rightarrow a, a \rightarrow R \Rightarrow P \rightarrow R$)
{1,2,4}	7) 7PV7S	Rule T (P→a ⇔¬PVQ)
ξ1,2,4 ζ	8) ¬ (P^s)	Rule T (Demorgan's)
{9 }	q) PAS	Rule P
{1,2,4,9}	10) (PAS) A 7 (PAS)	Rule T (P, a ⇒ PAQ)

which is nothing but false value. Therefore given premises are inconsistent.

2 Prove that P→Q, Q→R, R→S, and PAS are inconsistent.

{ 1 }	1) P→Q	Rule P
{2 }	2) Q → R	Rule P
ξ1,2°ς	3) $P \rightarrow R$	Rule T (P→Q,Q→R ⇒ P→R)
ξ 4 ζ	4) R → S	Rule P
ξ1,2,4 ζ	5) P→S	Rule T (P→a,a→R ⇒ P→R
\$6 }	6) S → ¬R	Rule P
{6 }	¬) R → ¬ S	Rule 7 (P→a ⇔ ¬a→
{6 }	8) ¬RV¬S	Rule T (P→a ⇔ ¬PVO
<i>{6}</i>	9) 75	Rule T (PVa ⇒ a)
{1,2,4,6}	10) ¬ P	Rule T (P→Q,¬Q→¬
\$1,2,4,6}	11) ¬PV¬S	Rule T (P, Q \Rightarrow PVQ
§ 123	12) PAS	Rule P
\$1,2,4,6}	13) ¬(PAS)	Rule T (Demorgan's)
\$1,2,4,6,12}	14) (PAS) \$A'	Rule T (P, a => PAB)
which is	nothing but fa	lse value. Therefore
nen þremi	ses are inconsistin	t.

Indirect Method of Proof

In order to show that a conclusion C follows logically from the premises H., H., ... Hm, we assure C is FALSE and consider - C as an additional premises. If H, A H, A ... A Hm A - C is a contradiction, then C follows logically from H, H, ..., Hm.

1. Using indirect method of proof, durive P→¬S

from the premises P→ (qvr), q→¬P, S→¬r and P.

we consider - (P -> -s) as an additional premises. = - (-PV-s) = PAS.

\$13	1) pas	Assumud premises
§2 }	$(2) p \rightarrow (q vr)$	Rule P
{3 }	3) P	Rule P
{2,3}	4) 9V7	Rule $T(P, P \rightarrow a \Rightarrow a)$
{1 }	5) 5	Rule T (PAQ ⇒ Q)
{6 }	6) 5 -> 7Y	Rule P
£1,6}	7) 77	Rule T (P, P→a ⇒ a).
		-2

$$\begin{cases} 2,3 \end{cases} & 8 \end{cases} \neg 9 \rightarrow \Upsilon & \text{Rule T } (P \rightarrow \alpha \Leftrightarrow \neg P \vee Q) \\ \begin{cases} 2,3 \end{cases} & 9 \end{cases} \neg \Upsilon \rightarrow 9 & \text{Rule T } (\text{contrapositive}) \\ \begin{cases} 1,2,3,6 \end{cases} & 10 \end{cases} & 9 & \text{Rule T } (P, P \rightarrow \alpha \Rightarrow \alpha) \\ \begin{cases} 11 \end{cases} & 11 \end{cases} & 9 \rightarrow \neg P & \text{Rule P} \\ \begin{cases} 1,2,3,6,11 \end{cases} & 12 \end{cases} \rightarrow P & \text{Rule T } (P, P \rightarrow \alpha \Rightarrow \alpha) \\ \begin{cases} 1,2,3,6,11 \end{cases} & 13 \end{cases} & P \wedge \neg P & \text{Rule T } (P, Q \Rightarrow P \wedge Q) \end{cases}$$

which is nothing but false value. By method of contradiction, $p \rightarrow \neg S$

2) Show that the following argument is valid.

"Try father praises me only if I can be proud of myself. Either I do well in sports or I cannot be proud of brintself. If study hard, then I cannot do well in sports. Therefore, if father praises me, then I do not study well."

Let A: My father praises me

B: I can be proud of myself

c: I do well in sports

D: I study hard

Thun, the premises are

 $A \rightarrow B$, $C \lor \neg B$, $D \rightarrow \neg C$

conclusion is A → ¬D

•	MATORIS	www.
{1}	1) A	Assumed premises
{2 }	5) V→B	Rule P
\$1,23	3) B	Rule T (P, P→a ⇒a)
54 {	4) C V ¬ B	Rule P
{4 }	5) B → C	Rule T (P→a ⇔¬PVa)
{1,2,4}	6) C	Rule T (P, P→a ⇒a)
६७९	7) D → 7 C	Rule P
ξηζ	8) c → ¬D	Rule T
\$1,2,4,7}	9) ¬D	Rule $T(P, P \rightarrow a \Rightarrow a)$
	10) A → ¬D	Rule CP
and the same of	District of the second	not and of the second