

SNS COLLEGE OF ENGINEERING

TOPIC:6-Problems based on inference theory of Statement Calculus

1 Demonstrate that R is a valid inference from

1 premises P \rightarrow \alpha, \alpha \rightarrow \text{R and P}.

1 premises P \rightarrow \alpha, \alpha \rightarrow \text{R and P}.

1 pre given premises are

1 P \rightarrow \alpha

2 a \rightarrow \text{R}

3 P

313	1) P→Q	Rule P
{2}	2) P	Rule P
§1,2}	3) Q	Rule T (P, P \rightarrow Q \Rightarrow Q)
543	4) Q→R	Rule P
{1,2,4}	5) R	Rule T (P, P→Q ⇒ a
1)		

SNS COLLEGE OF ENGINEERING Coimbatore – 641 107

show that $(P \rightarrow Q) \land (R \rightarrow S)$, $(Q \nmid M) \land (S \rightarrow N)$

$$\neg (MNN)$$
 and $(P \rightarrow R) \Rightarrow \neg P$.

$$(Q \rightarrow M) \wedge (S \rightarrow N)$$
, $\neg (M \wedge N)$ and $(P \rightarrow R)$

(on dusion is - P.

SNS COLLEGE OF ENGINEERING Coimbatore – 641 107

Prove that the following argument is valid:

$$p \rightarrow \neg q, \gamma \rightarrow q, \gamma \Rightarrow \neg p$$

Given premises are $p \rightarrow \neg q$, $\gamma \rightarrow q$, γ

conclusion is - P.

SNS COLLEGE OF ENGINEERING Coimbatore – 641 107

513	1) 7	Rule P
{2}	2) ~→q	Rule P
\$1,23	3) 9	Rule $T(P, P \rightarrow Q \Rightarrow Q)$
<i>{</i> 4 <i>{</i>	4) p→¬9	Rule P
ξ1,2,4}	5) ¬P	Ruh T (P→¬a,a ⇒ ¬P)