## SNS COLLEGE OF ENGINEERING

Kurumbapalayam(Po), Coimbatore - 641912
Accredited by NAAC-UGC with 'A' Grade Approved by AICTE, Recognized by UGC \& Affiliated to Anna University, Chennai

## Parametric Form of Curve

## Explicit Representation

- Most familiar form of curve in 2D

$$
y=f(x)
$$

- Cannot represent all curves
- Vertical lines
- Circles

- Extension to 3D
$-\mathrm{y}=\mathrm{f}(\mathrm{x}), \mathrm{z}=\mathrm{g}(\mathrm{x})$
- The form $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$ defines a surface


## Parametric Curves

- Separate equation for each spatial variable

$$
\begin{aligned}
& x=x(u) \\
& y=y(u) \\
& z=z(u)
\end{aligned}
$$

$$
\mathbf{p}(\mathrm{u})=[\mathrm{x}(\mathrm{u}), \mathrm{y}(\mathrm{u}), \mathrm{z}(\mathrm{u})]^{\mathrm{T}}
$$

- For $u_{\text {max }} \geq u \geq u_{\text {min }}$ we trace out a curve in two or three dimensions



## Parametric Lines

We can normalize $u$ to be over the interval $(0,1)$
Line connecting two points $\mathbf{p}_{0}$ and $\mathbf{p}_{1}$

$$
\mathbf{p}(\mathrm{u})=(1-\mathrm{u}) \mathbf{p}_{0}+\mathrm{u} \mathbf{p}_{1}
$$

$$
\mathbf{p}(0)=\mathbf{p}_{0}
$$

Ray from $\mathbf{p}_{0}$ in the direction $\mathbf{d}$

$$
\mathbf{p}(\mathrm{u})=\mathbf{p}_{0}+\mathrm{ud}
$$



## Curve Segments

- After normalizing $u$, each curve is written

$$
p(u)=[x(u), y(u), z(u)]^{\top}, \quad 1 \geq u \geq 0
$$

- In classical numerical methods, we design a single global curve
- In computer graphics and CAD, it is better to design small connected curve segments



## Parametric Polynomial Curve

$x(u)=\sum_{i=0}^{N} c_{x i} u^{i} y(u)=\sum_{j=0}^{M} c_{y j} u^{j} \quad z(u)=\sum_{k=0}^{L} c_{z k} u^{k}$
-If $\mathrm{N}=\mathrm{M}=\mathrm{K}$, we need to determine $3(\mathrm{~N}+1)$ coefficients
-Equivalently we need $3(\mathrm{~N}+1)$ independent conditions
-Noting that the curves for $\mathrm{x}, \mathrm{y}$ and z are independent, we can define each independently in an identical manner -We will use the form $\mathrm{p}(u)=\sum_{k=0}^{L} c_{k} u^{k}$
where p can be any of $\mathrm{x}, \mathrm{y}, \mathrm{z}$

## Why Polynomials

- Easy to evaluate
- Continuous and differentiable everywhere
- Must worry about continuity at join points including continuity of derivatives


