

SNS COLLEGE OF ENGINEERING

Kurumbapalayam(Po), Coimbatore – 641 916 Accredited by NAAC-UGC with 'A' Grade Approved by AICTE, Recognized by UGC & Affiliated to Anna University, Chennai

Department of Information Technology

Course Name – Computer Graphics

III Year / V Semester

Unit 1– INTRODUCTION TO COMPUTER GRAPHICS

Topic : Points and Lines , Line Drawing Algorithms

Relate the image to topic

Points and Lines , Line Drawing Algorithm-Basic Illumination Models/Nandakumar/IT/SNSCE

Line

> A line in Computer graphics is a portion of straight line that extends indefinitely in opposite direction.

It is defined by its two end points.

> Its density should be independent of line length.

The slope intercept equation for a line:

$$\mathbf{y} = \mathbf{m}\mathbf{x} + \mathbf{b} \tag{1}$$

where, $\mathbf{m} = \text{Slope of the line}$

 \mathbf{b} = the y intercept of a line

Points and Lines , Line Drawing Algorithm-Basic Illumination Models/Nandakumar/IT/SNSCE

21/09/2022

Line Drawing Algorithm

The two endpoints of a line segment are specified at positions (x1,y1) and (x2,y2).

Points and Lines , Line Drawing Algorithm-Basic Illumination Models/Nandakumar/IT/SNSCE

21/09/2022

Line Drawing Algorithm

We can determine the value for slope m & b intercept as $m = y^2 - y^1 / x^2 - x^1$

i.e. m= $\Delta y / \Delta x$ (2)

Example:

The endpoints of line are(0,0) & (6,18). Compute each value of y as x steps from 0 to 6 and plot the result. **Solution :** Equation of line is y= mx +b $m = y^2 - y^1 / x^2 - x^1 = 18 - 0/6 - 0 = 3$

> Points and Lines , Line Drawing Algorithm-Basic Illumination Models/Nandakumar/IT/SNSCE

21/09/2022

DDA Algorithm

- > The Digital differential analyzer (DDA) algorithm is an incremental scan-conversion method.
- > Such an approach is characterized by performing calculations at each step using results from the preceding step.

Points and Lines , Line Drawing Algorithm-Basic Illumination Models/Nandakumar/IT/SNSCE

Algorithm

```
(x1,y1) (x2,y2) are the end points and dx, dy are the float variables.
Where dx = abs(x2-x1) and dy = abs(y2-y1)
    If dx >= dy then
(i)
          length = dx
     else
          length = dy
     endif
ii) dx = (x2-x1)/length
  dy = (y2-y1)/length
(iii)x = x1 + 0.5
   y = y1 + 0.5
(iv) i = 0
(v)Plot ((x), (y))
(vi) x = x + dx
   y = y + dy
(vii) i = i + 1
```

Points and Lines , Line Drawing Algorithm-Basic Illumination Models/Nandakumar/IT/SNSCE

21/09/2022

Algorithm

(viii) If i < length then go to step (v) Stop (ix)

> Points and Lines , Line Drawing Algorithm-Basic Illumination Models/Nandakumar/IT/SNSCE

Example

x 1	y1	x2	y2	L	dx	dy	i	X	у	Result	Plot
3	2	4	7	5	.2	1	0	3.5	2.5	3.5, 2.5	3,2
							1	3.7	3.5	3.7,3.5	3,3
							2	3.9	4.5	3.9,4.5	3,4
							3	4.1	5.5	4.1,5.5	4,5
							4	4.3	6.5	4.3,6.5	4,6
							5	4.5	7.5	4.5,7.5	4,7

Points and Lines , Line Drawing Algorithm-Basic Illumination Models/Nandakumar/IT/SNSCE

21/09/2022

TONS

Limitations of DDA

- > The rounding operation & floating point arithmetic are time consuming procedures.
- > Round-off error can cause the calculated pixel position to drift away from the true line path for long line segment.

Points and Lines , Line Drawing Algorithm-Basic Illumination Models/Nandakumar/IT/SNSCE

Bresenham Line Algorithm

> The Bresenham algorithm is another incremental scan conversion algorithm

> The big advantage of this algorithm is that it uses only integer calculations

Points and Lines , Line Drawing Algorithm-Basic Illumination Models/Nandakumar/IT/SNSCE

Deriving The Bresenham Line Algorithm

At sample position x_k+1 the vertical separations from the mathematical line are labelled d_{upper} and d_{lower}

The *y* coordinate on the mathematical line at x_k +1 is:

$$y = m(x_k + 1) + b$$

Points and Lines , Line Drawing Algorithm-Basic Illumination Models/Nandakumar/IT/SNSCE

BRESENHAM'S LINE DRAWING ALGORITHM

- Input the two line end-points, storing the left end-point in (x_1, y_1) 1.
- Calculate the constants Δx *i.e.* dx, Δy *i.e.* dy, $2\Delta y$ and $2\Delta x$, get the first value for the decision 2. parameter as

$$e = 2\Delta y - \Delta x$$

- 3. Initialize starting
- 4. Initialize i=1 as a counter, $e = e + 2\Delta y$

Otherwise, the next point to plot is (x_k+1, y_k+1) and:

$$p_{k+1} = p_k + 2\Delta y - 2\Delta x$$

5. Repeat step 4 ($\Delta x - 1$) times

Points and Lines , Line Drawing Algorithm-Basic Illumination Models/Nandakumar/IT/SNSCE

21/09/2022

Adjustment

For m>1, we will find whether we will increment x while incrementing y each time.

After solving, the equation for decision parameter p_k will be very similar, just the x and y in the equation will get interchanged.

> Points and Lines , Line Drawing Algorithm-Basic Illumination Models/Nandakumar/IT/SNSCE

Bresenham Example

Let's plot the line from (20, 10) to (30, 18)First off calculate all of the constants:

≻ Δx: 10 ≻ ∆y: 8 ≻ 2∆y: 16 $\succ 2\Delta y - 2\Delta x$: -4 Calculate the initial decision parameter p_0 : $> p0 = 2\Delta y - \Delta x = 6$

> Points and Lines , Line Drawing Algorithm-Basic Illumination Models/Nandakumar/IT/SNSCE

21/09/2022

THANK YOU

Points and Lines , Line Drawing Algorithm-Basic Illumination Models/Nandakumar/IT/SNSCE

21/09/2022

