SNS COLLEGE OF ENGINEERING

Kurumbapalayam(Po), Coimbatore - 641916
Accredited by NAAC-UGC with ' A ' Grade
Approved by AICTE, Recognized by UGC \& Affiliated to Anna University, Chennai
Department of Information Technology
Course Name -Computer Graphics
III Year / V Semester

Unit 1- INTRODUCTION TO COMPUTER GRAPHICS

Topic :Points and Lines, Line Drawing Algorithms

Relate the image to topic

Points and Lines, Line Drawing Algorithm-Basic Illumination

Line

 - ${ }^{\circ}$
$>$ A line in Computer graphics is a portion of straight line that extends indefinitely in opposite direction.
$>$ It is defined by its two end points.
$>$ Its density should be independent of line length.
The slope intercept equation for a line:

$$
\begin{equation*}
y=m x+b \tag{1}
\end{equation*}
$$

where, $\mathbf{m}=$ Slope of the line
$\mathbf{b}=$ the y intercept of a line

Line Drawing Algorithm

The two endpoints of a line segment are specified at positions ($\mathbf{x} \mathbf{1}, \mathbf{y} \mathbf{1}$) and ($\mathbf{x} \mathbf{2}, \mathbf{y} \mathbf{2}$).

Line Drawing Algorithm

We can determine the value for slope m \& b intercept as

$$
\begin{equation*}
m=y 2-y 1 / x 2-x 1 \tag{2}
\end{equation*}
$$

i.e. $m=\Delta y / \Delta x$

Example:

The endpoints of line are $(0,0) \&(6,18)$. Compute each value of y as x steps from 0 to 6 and plot the result.
Solution : Equation of line is $y=m x+b$
$m=y 2-y 1 / x 2-x 1=18-0 / 6-0=3$

DDA Algorithm

$>$ The Digital differential analyzer (DDA) algorithm is an incremental scan-conversion method.
$>$ Such an approach is characterized by performing calculations at each step using results from the preceding step.
$(x 1, y 1)(x 2, y 2)$ are the end points and $d x$, dy are the float variables.
Where $d x=a b s(x 2-x 1)$ and $d y=a b s(y 2-y 1)$
(i) If $\mathrm{dx}>=\mathrm{dy}$ then length $=d x$
else
length $=d y$
endif
ii) $d x=(x 2-x 1) /$ length
$d y=(y 2-y 1) /$ length
(iii) $x=x 1+0.5$
$y=y 1+0.5$
(iv) $\mathrm{i}=0$
(v)Plot ((x), (y))
(vi) $x=x+d x$
$y=y+d y$
(vii) $\mathrm{i}=\mathrm{i}+1$

Algorithm

(viii) If $\mathrm{i}<$ length then go to step (v) Algorithm
(ix) Stop
(viii) if $i<$ length then go to step (v)
(ix) Stop
-
\qquad
$\begin{array}{ll}\text { (viii) } & \text { If } i<\text { length then go to step (v) } \\ \text { (ix) } & \text { Stop }\end{array}$
(viii) $\begin{aligned} & \text { If } \mathrm{i} \text { < length then go to step }(\mathrm{v}) \\ & \text { (ix) } \\ & \text { Stop }\end{aligned}$
$\begin{aligned} & \text { Points and Lines, Line Drawing Algorithm-Basic Illumination } \\ & \text { Models/Nandakumar/IT/SNSCE }\end{aligned}$
$\begin{aligned} & \text { M/09/2022 }\end{aligned}$
(viii) $\begin{aligned} & \text { If } \mathrm{i} \text { < length then go to step }(\mathrm{v}) \\ & \text { (ix) } \\ & \text { Stop }\end{aligned}$
$\begin{aligned} & \text { Points and Lines, Line Drawing Algorithm-Basic Illumination } \\ & \text { Models/Nandakumar/IT/SNSCE }\end{aligned}$
$\begin{aligned} & \text { M/09/2022 }\end{aligned}$
\square

-
-

Example

x 1	y 1	x 2	y 2	L	dx	dy	i	x	y	Result	Plot
3	2	4	7	5	.2	1	0	3.5	2.5	$3.5,2.5$	3,2
							1	3.7	3.5	$3.7,3.5$	3,3
							2	3.9	4.5	$3.9,4.5$	3,4
							3	4.1	5.5	$4.1,5.5$	4,5
							4	4.3	6.5	$4.3,6.5$	4,6
							5	4.5	7.5	$4.5,7.5$	4,7

Limitations of DDA

$>$ The rounding operation \& floating point arithmetic are time consuming procedures.
$>$ Round-off error can cause the calculated pixel position to drift away from the true line path for long line segment.

Bresenham Line Algorithm

$>$ The Bresenham algorithm is another incremental scan conversion algorithm
$>$ The big advantage of this algorithm is that it uses only integer calculations (

Deriving The Bresenham Line Algorithm

At sample position $x_{k}+1$ the vertical separations from the mathematical line are labelled $d_{\text {upper }}$ and $d_{\text {lower }}$

The y coordinate on the mathematical line at $x_{k}+1$ is:

$$
y=m\left(x_{k}+1\right)+b
$$

BRESENHAM'S LINE DRAWING ALGORITHM

1. Input the two line end-points, storing the left end-point in $\left(x_{1}, y_{1}\right)$
2. Calculate the constants Δx i.e. $d x, \Delta y$ i.e. $d y, 2 \Delta y$ and $2 \Delta x$, get the first value for the decision parameter as

$$
e=2 \Delta y-\Delta x
$$

3. Initialize starting
4. Initialize $\mathrm{i}=1$ as a counter, $\quad e=e+2 \Delta y$

Otherwise, the next point to plot is $\left(x_{k}+1, y_{k}+1\right)$ and:

$$
p_{k+1}=p_{k}+2 \Delta y-2 \Delta x
$$

5. Repeat step $4(\Delta x-1)$ times

For $m>1$, we will find whether we will increment x while incrementing y each time.
After solving, the equation for decision parameter p_{k} will be very similar, just the x and y in the equation will get interchanged.

Bresenham Example

Let's plot the line from $(20,10)$ to $(30,18)$
First off calculate all of the constants:
$>\Delta x: 10$
> $\Delta y: 8$
$>2 \Delta y: 16$
$>2 \Delta y-2 \Delta x$: -4
Calculate the initial decision parameter p_{0} :
$>p 0=2 \Delta y-\Delta x=6$

E

