

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE NAME: 19CS732 INFORMATION RETRIEVAL
TECHNIQUES

IVYEAR / VII SEMESTER

Unit 2- MODELING AND RETRIEVAL EVALUATION

Topic 8: Precision and Recall and Reference Collection

Problem

- ➤ Makes experimental work hard
 - > Especially on a large scale
- ➤In some very specific settings, can use proxies
 - ➤E.g.: for approximate vector space retrieval, we can compare the cosine distance closeness of the closest docs to those found by an approximate retrieval algorithm
- ➤But once we have test collections, we can reuse them (so long as we don't overtrain too badly)

Precision and Recall

Precision:

fraction of retrieved docs that are relevant = P(relevant|retrieved)

Recall:

fraction of relevant docs that are retrieved = P(retrieved|relevant)

	Relevant	Nonrelevant
Retrieved	tp	fp
Not Retrieved	fn	tn

Should we instead use the accuracy measure for evaluation?

- ➤ Given a query, an engine classifies each doc as "Relevant" or "Nonrelevant"
- The **accuracy** of an engine: the fraction of these classifications that are correct
 - \rightarrow (tp + tn) / (tp + fp + fn + tn)
- ➤ Accuracy is a commonly used evaluation measure in machine learning classification work
- ➤ Why is this not a very useful evaluation measure in IR?

Difficulties in using Precision/Recall

- ➤ Should average over large document collection/query ensembles
- ➤ Need human relevance assessments
 - ➤ People aren't reliable assessors
- ➤ Assessments have to be binary
 - ➤ Nuanced assessments?
- >Heavily skewed by collection/authorship
 - > Results may not translate from one domain to another

Precision/Recall -Cont..

Combined measure that assesses precision/recall tradeoff is **F measure** (weighted harmonic mean):

$$F = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$

People usually use balanced F_1 measure

i.e., with
$$\beta = 1$$
 or $\alpha = \frac{1}{2}$

Harmonic mean is a conservative average

See CJ van Rijsbergen, Information Retrieval

Kappa measure for inter-judge (dis)agreement

Kappa measure

Agreement measure among judges

Designed for categorical judgments

Corrects for chance agreement

Kappa =
$$[P(A) - P(E)] / [1 - P(E)]$$

P(A) – proportion of time judges agree

P(E) – what agreement would be by chance

Kappa = 0 for chance agreement, 1 for total agreement.

Kappa Measure: Example

Number of docs	Judge 1	Judge 2
300	Relevant	Relevant
70	Nonrelevant	Nonrelevant
20	Relevant	Nonrelevant
10	Nonrelevant	Relevant

Kappa Example

$$P(A) = 370/400 = 0.925$$

$$P(nonrelevant) = (10+20+70+70)/800 = 0.2125$$

$$P(relevant) = (10+20+300+300)/800 = 0.7878$$

$$P(E) = 0.2125^2 + 0.7878^2 = 0.665$$

Kappa =
$$(0.925 - 0.665)/(1-0.665) = 0.776$$

Kappa > 0.8 = good agreement

0.67 < Kappa < 0.8 -> "tentative conclusions" (Carletta '96)

Depends on purpose of study

For >2 judges: average pairwise kappas

Activity

Disadvantages

- > A document can be redundant even if it is highly relevant
- **≻**Duplicates
- The same information from different sources
- ➤ Marginal relevance is a better measure of utility for the user.
- ➤ Using facts/entities as evaluation units more directly measures true relevance.
- > But harder to create evaluation set

Advantages

- >Impact on absolute performance measure can be significant (0.32 vs 0.39)
- ➤ Little impact on ranking of different systems or relative performance
- ➤ Suppose we want to know if algorithm A is better than algorithm B
- ➤ A standard information retrieval experiment will give us a reliable answer to this question.

Assessment 1

- 1. List out the Advantages of Precision and Recall and Reference Collection
 - a)_____
 - b)_____
 - c)_____
 - d)_____
- 2. Identify the disadvantages of Precision and Recall and Collection
 - a)_____
 - b)_____
 - c)_____
 - d)_____

INSTITUTIONS

TEXT BOOKS:

- 1. Ricardo Baeza-Yates and Berthier Ribeiro-Neto, —Modern Information Retrieval: The Concepts and Technology behind Search, Second Edition, ACM Press Books, 2011.
- 2. Ricci, F, Rokach, L. Shapira, B.Kantor, —Recommender Systems Handbook||, First Edition, 2011.

REFERENCES:

- 1. C. Manning, P. Raghavan, and H. Schütze, —Introduction to Information Retrieval, Cambridge University Press, 2008.
- 2. Stefan Buettcher, Charles L. A. Clarke and Gordon V. Cormack, —Information Retrieval: Implementing and Evaluating Search Engines, The MIT Press, 2010.

THANK YOU