

SNS COLLEGE OF ENGINEERING Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE NAME : 19CS732 INFORMATION RETRIEVAL TECHNIQUES

IVYEAR / VII SEMESTER

Unit 2- MODELING AND RETRIEVAL EVALUATION

Topic 5 : Latent Semantic Indexing Model

Problem

>Optimizing content for organic search visibility has evolved in line with Google's advancements.

> Equally, search engines still have challenges when trying to understand the

meaning of words in context.

> Perform a low-rank approximation of document-term matrix (typical rank **100–300**) ≻General idea Map documents (and terms) to a low-dimensional representation. \blacktriangleright Design a mapping such that the low-dimensional space reflects **semantic associations** (latent semantic space). Compute document similarity based on the **inner product** in this **latent semantic space**

> Application of Latent Semantic Analysis (LSA) to Information Retrieval

➢ Motivations

 \succ Unreliable evidence

Synonomy: Many words refer to same object

Affects recall

> polysemy: Many words have multiple meanings Affects precision

The document ranking problem

			Sample Term by Document matrix								
	access	document	retrieval	information	theory	database	indexing				
Doc 1	Х	Х	х			х	х				
Doc 2				X^{Φ}	Х						
Doc 3			х	X^{Φ}							
Query:	"IDF in ca	<i>mputer-</i> based	information	look-up"							

Source: Deerwater et al. 1990

LSA Solution

> Terms are overly noisy

>analogous to overfitting in Term-by-Document matrix

 \succ Terms and documents should be represented by vectors in a

"latent" semantic space

LSI essentially infers knowledge from co-occurrence of terms

>Assume "errors" (sparse data, non-co-occurrences) are normal and account for them

LSA Methods

- Start with a Term-by-Document matrix (A, like fig. 15.5)
- Optionally weight cells
- Apply Singular Value Decomposition:
 - -t = # of terms
 - -d = # of documents
 - -n = min(t, d)

$$A_{t \times d} = T_{t \times n} \times S_{n \times n} \times (D_{d \times n})^{T}$$

• Approximate using k (semantic) dimensions:

$$\hat{A}_{t \times d} = T_{t \times k} \times S_{k \times k} \times (D_{d \times k})^{T}$$

LSA Methods -Cont..

 \succ So that the Euclidean distance is minimized (hence, a least squares) method)

 \succ Each row of T is a measure of similarity for a term to a semantic

dimension

► Likewise for D

LSA Application

- \geq Querying for Information Retrieval: query is a psuedodocument:
 - >weighted sum over all terms in query of rows of T
 - \triangleright compare similarity to all documents in D using cosine
 - similarity measure
- Document similarity: vector comparison of D
- \succ Term similarity: vector comparison of T

LSA Application -Cont..

Choosing k is difficult commonly k = 100, 150, 300 or so overfitting (superfluous dimensions) vs. underfitting (not enough dimensions) 0.60.5 What are the k semantic dimensions? performance 0.40.3 undefined 0.2

0.1

0.0

Considerations of LSA

Conceptually high recall: query and document terms may be disjoint

- ➢Polysemes not handled well
- LSI: Unsupervised/completely automatic
- ► Language independent
- ► CL-LSI: Cross-Language LSI
 - >weakly trained
- Computational complexity is high
 - \blacktriangleright optimization: random sampling methods
- Formal Linear Algebra foundations
- ► Models language acquisition in children

Activity

Main idea

- map each document into some 'concepts'
- map each term into some 'concepts'

'Concept' : ~ a set of terms, with weights.

For example, DBMS_concept: "data" (0.8), "system" (0.5), "retrieval" (0.6)

> Unit-2/Modeling and Retrieval Evaluation /19CS732 Information Retrieval Techniques /Jebakumar Immanuel D/CSE/SNSCE

~ pictorially (after) ~

se pt	medical concept	
_	1	
	1	

Q: How to search, e.g., for "system"? A: find the corresponding concept(s); and the corresponding documents

Works like an automatically constructed thesaurus

We may retrieve documents that **DON'T** have the term "system", but they contain almost everything else ("data", "retrieval")

LSI - Discussion

Great idea,

- to derive 'concepts' from documents
- to build a 'thesaurus' automatically
- to reduce dimensionality (down to few "concepts")

How does LSI work? Uses Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD) Motivation

Find "concepts" in matrices

Problem #2

Compression / dimensionality reduction

1000	0%	Q.
		-
0	2	
2	2	
1	1	

SVD is a powerful, generalizable technique.

Songs / Movies / Products

Unit-2/Modeling and Retrieval Evaluation /19CS732 Information Retrieval Techniques /Jebakumar Immanuel D/CSE/SNSCE

m

m terms r concepts

SVD Definition (in words)

$$\mathbf{A}_{[n \times m]} = \mathbf{U}_{[n \times r]} \Lambda_{[r \times r]} (\mathbf{V}_{[m]})$$

A: n x m matrix e.g., n documents, m terms

U: n x r matrix

e.g., n documents, r concepts

Λ: r x r diagonal matrix

r : rank of the matrix; strength of each 'concept'

V: m x r matrix

e.g., m terms, r concepts

Unit-2/Modeling and Retrieval Evaluation /19CS732 Information Retrieval Techniques /Jebakumar Immanuel D/CSE/SNSCE

r concepts

m

SVD - Properties

THEOREM [Press+92]: always possible to decompose matrix A into $\mathbf{A} = \mathbf{U} \wedge \mathbf{V}^{\mathsf{T}}$ **U**, Λ , **V**: **unique**, most of the time **U**, **V**: column orthonormal i.e., columns are unit vectors, and orthogonal to each other $\mathbf{U}^{\mathsf{T}} \mathbf{U} = \mathbf{I}$ (I: identity matrix) $\mathbf{V}^{\mathsf{T}} \mathbf{V} = \mathbf{I}$ Λ : diagonal matrix with non-negative diagonal entires, sorted in decreasing order

Unit-2/Modeling and Retrieval Evaluation /19CS732 Information Retrieval Techniques /Jebakumar Immanuel D/CSE/SNSCE

U	v				a					
	80	24	loj oj	0000	(mno	0	0.18	0		
Ť	1	1	1	0	0		0.18	0		
00	2	2	2	0	0		0.30	0		
docs							0 10	~		-
docs	1	1	1	0	0		0.18	0		9.64
docs	1 5	1	1	0	0	=	0.18	0	x	9.64
	1 5 0	1 5 0	1 5 0	0 2	0 2	=	0.18	0 0 0.53	x	9.64 0
	1 5 0	1 5 0	1 5 0	0 2 3	0 2 3	=	0.18	0 0.53 0.80	x	9.64 0

Unit-2/Modeling and Retrieval Evaluation /19CS732 Information Retrieval Techniques /Jebakumar Immanuel D/CSE/SNSCE

Disadvantages

Since it is a distributional model, so not an efficient representation, when compared against state-of-the-art methods (say deep neural networks). \succ Representation is dense, so hard to index based on indvidual dimensions. > It is a linear model, so not the best solution to handle non linear dependencies \succ The latent topic dimension can not be chosen to arbitrary numbers. It depends on the rank of the matrix, so can't go beyond that.

Advantages

- ➢ Easy to implement, understand and use. There are many practical and scalable implementations available
- Performance: LSA is capable of assuring decent results , much better than plain
 vector space model. It works well on dataset with diverse topics.
 Synonymy: LSA can handle Synonymy problems to some extent (depends on dataset though)
- >Runtime : Since it only involves decomposing your term document matrix, it is
- faster, compared to other dimensionality reduction models

rm document matrix, it is dels

Assessment 1

1. List out the Advantages of Latent Semantic Indexing Model

2. Identify the disadvantages of Latent Semantic Index

Assessment

TEXT BOOKS:

1. Ricardo Baeza-Yates and Berthier Ribeiro-Neto, —Modern Information Retrieval: The Concepts and Technology behind Search, Second Edition, ACM Press Books, 2011. 2. Ricci, F, Rokach, L. Shapira, B.Kantor, —Recommender Systems Handbook||, First Edition, 2011.

REFERENCES:

1. C. Manning, P. Raghavan, and H. Schütze, —Introduction to Information Retrieval, Cambridge University Press, 2008.

2. Stefan Buettcher, Charles L. A. Clarke and Gordon V. Cormack, —Information Retrieval:

Implementing and Evaluating Search Engines, The MIT Press, 2010.

THANK YOU

