

SNS COLLEGE OF ENGINEERING Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE NAME : 19CS732 INFORMATION RETRIEVAL TECHNIQUES

IVYEAR / VII SEMESTER

Unit 2- MODELING AND RETRIEVAL EVALUATION

Topic 2 : Vector Space Model

Problem

 \succ How to determine important words in a document? ► Word sense?

 \rightarrow Word *n*-grams (and phrases, idioms,...) \rightarrow terms \blacktriangleright How to determine the degree of importance of a term within a document and within the entire collection?

 \succ How to determine the degree of similarity between a document and the query? \succ In the case of the web, what is the collection and what are the effects of links, formatting information, etc.?

Vector Space Model

 \succ The Vector Space Model (VSM) is a way of representing documents through the words that they contain ► It is a standard technique in Information Retrieval \succ The VSM allows decisions to be made about which documents are similar to each other and to keyword queries

How it works: Overview

 \succ Each document is broken down into a word frequency table \succ The tables are called vectors and can be stored as arrays \blacktriangleright A vocabulary is built from all the words in all documents in the system \succ Each document is represented as a vector based against the vocabulary

• Document A -"A dog and a cat."

а	dog	and	са
2	1	1	1

• Document B -"A frog."

а	frog	
1	1	

➤The vocabulary contains all words used \succ a, dog, and, cat, frog The vocabulary needs to be sorted \succ a, and, cat, dog, frog

Document A: "A dog and a cat."

Vector: (2,1,1,1,0) Document B: "A frog."

а	and	cat	dog	frog
2	1	1	1	0

а	and	cat	dog	frog
1	0	0	0	1

Vector: (1,0,0,0,1)

• Queries can be represented as vectors in the same way as documents:

$$-Dog = (0,0,0,1,0)$$

$$-Frog = (0,0,0,0,1)$$

-Dog and frog = (0,0,0,1,1)

Define: \bullet

 \Box wij > 0 whenever ki \in dj

 \Box wiq >= 0 associated with the pair (ki,q)

 \Box vec(dj) = (w1j, w2j, ..., wtj) V w2q, ..., wtq)

□To each term *ki*, associate a unit vector *vec(i)*

 \Box The *t* unit vectors, *vec(1), ..., vec(t)* form an *orthonormal basis* (embodying independence assumption) for the t-dimensional space for representing queries and documents

$$vec(q) = (w1q,$$

- How to compute the weights *wij* and *wiq*? **Q**quantification of intra-document content (similarity/semantic emphasis)
 - •*tf* factor, the *term frequency* within a document
 - **Quantification of inter-document separation (dis**similarity/significant discriminant)
 - *idf* factor, the *inverse* document frequency $\Box wij = tf(i,j) * idf(i)$

N be the total number of docs in the collection *ni* be the number of docs which contain *ki freq(i,j)* raw frequency of *ki* within *dj* A normalized *tf* factor is given by f(i,j) = freq(i,j) / max(freq(l,j))where the maximum is computed over all terms which occur within the document dj The *idf* factor is computed as idf(i) = log(N/ni)

the *log* makes the values of *tf* and *idf* comparable.

Represent documents and queries as Vectors of term-based features Features: tied to occurrence of terms in collection $\vec{d}_i = (t_{1,i}, t_{2,i}, \dots, t_{N,i}); \vec{q}_k = (t_{1,k}, t_{2,k}, \dots, t_{N,k})$ E.g. Solution 1: Binary features: t=1 if presense, 0 otherwise Similiarity: number of terms in common Dot product $sim(\vec{q}_k, \vec{d}_j) = \sum^N t_{i,k} t_{i,j}$

> Unit-2/Modeling and Retrieval Evaluation /19CS732 Information Retrieval Techniques /Jebakumar Immanuel D/CSE/SNSCE

- Problem: Not all terms equally interesting
 - -E.g. the vs dog vs Levow

 $\vec{d}_i = (w_{1,i}, w_{2,i}, \dots, w_{N,i}); \vec{q}_k = (w_{1,k}, w_{2,k}, \dots, w_{N,k})$

- Solution: Replace binary term features with weights
 - –Document collection: term-by-document matrix
 - -View as vector in multidimensional space
 - Nearby vectors are related
 - –Normalize for vector length

Similarity = Dot product

$$sim(\vec{q}_k, \vec{d}_j) = \vec{q}_k \bullet \vec{d}_j = \sum_{i=1}^N w_{i,k} w_{i,j}$$

Normalization:

Normalize weights in advance

Normalize post-hoc

$$sim(\vec{q}_{k}, \vec{d}_{j}) = \frac{\sum_{i=1}^{N} w_{i,k} w_{i,j}}{\sqrt{\sum_{i=1}^{N} w_{i,k}^{2} \sqrt{\sum_{i=1}^{N} w_{i,j}^{2}}}}$$

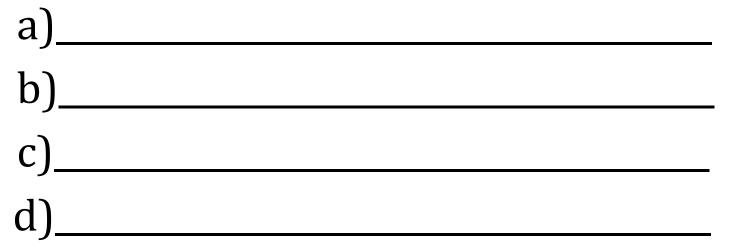
Activity

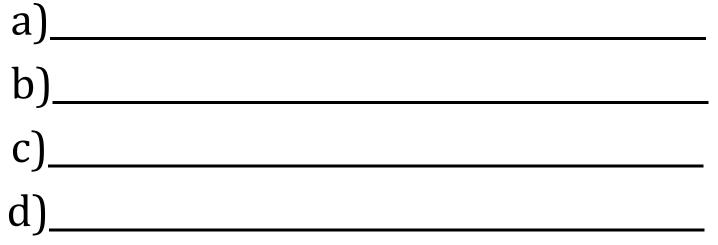
Unit-2/Modeling and Retrieval Evaluation /19CS732 Information Retrieval Techniques /Jebakumar Immanuel D/CSE/SNSCE

Disadvantages

> assumes independence of index terms; not clear that this is bad though

Advantages


 \succ term-weighting improves answer set quality \succ partial matching allows retrieval of docs that approximate the query conditions Cosine ranking formula sorts documents according to degree of similarity to the query



Assessment 1

1. List out the Advantages of Vector Space Model

2. Identify the disadvantages of Vector Space Model

TEXT BOOKS:

1. Ricardo Baeza-Yates and Berthier Ribeiro-Neto, —Modern Information Retrieval: The Concepts and Technology behind Search, Second Edition, ACM Press Books, 2011. 2. Ricci, F, Rokach, L. Shapira, B.Kantor, —Recommender Systems Handbook||, First Edition, 2011.

REFERENCES:

1. C. Manning, P. Raghavan, and H. Schütze, —Introduction to Information Retrieval, Cambridge University Press, 2008.

2. Stefan Buettcher, Charles L. A. Clarke and Gordon V. Cormack, —Information Retrieval:

Implementing and Evaluating Search Engines, The MIT Press, 2010.

THANK YOU

