

SNS COLLEGE OF ENGINEERING Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE NAME : 19CS732 INFORMATION RETRIEVAL TECHNIQUES

IVYEAR / VII SEMESTER

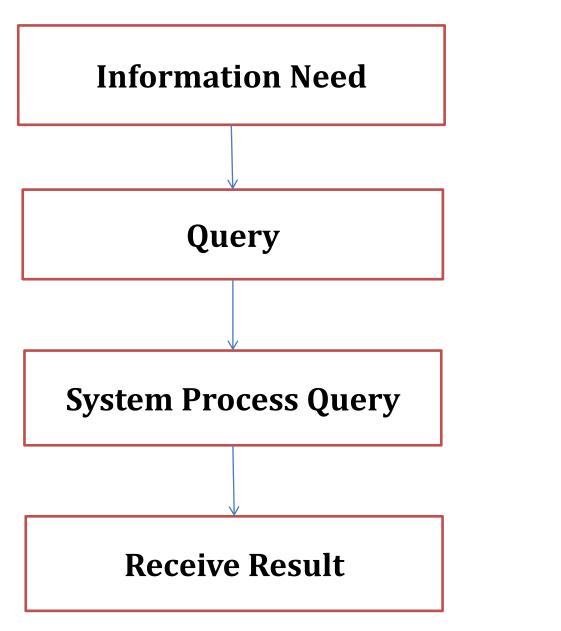
Unit 2- MODELING AND RETRIEVAL EVALUATION

Topic 1 : Basic IR Models and Boolean Model

Problem

Where are we now?

Text Processing Inverted Index construction Data structures, algorithms, compression... A set of scalable, efficient data structures for finding words in large text collections Now, let's take it back to the problem

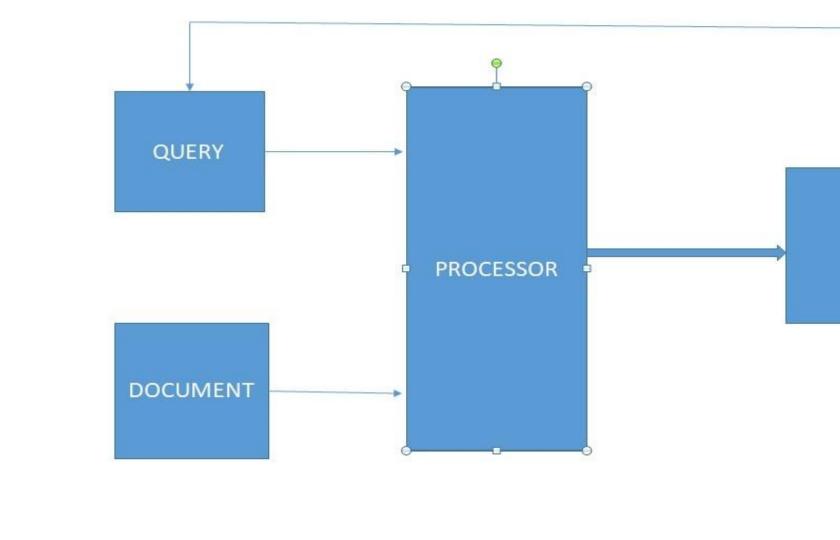

Search: Part of a user task

Classical IR- This is central task Add feedback loop where user refines query

► Modern IR - Part of the Big Picture An essential tool Used in search,

filtering, and browsing

✓ Handling User Queries


- ✓ Goal of the search component predict which
- documents are relevant to the user's need
- ✓ rank the documents in order of predicted likelihood
- of relevance to the use
- \succ Need a model which encompasses documents
- ➤Queries
- \succ Ranking
- **≻**Function

Basic IR Models and Boolean Model-Cont..

COMPONENTS OF IR

Unit-2/Modeling and Retrieval Evaluation /19CS732 Information Retrieval Techniques /Jebakumar Immanuel D/CSE/SNSCE

Information Retrieval Models

A retrieval model consists of:

- D: representation for documents
- R: representation for queries
- F: a modeling framework for D, Q, and the relationships among them
- R(q, di): a ranking or similarity function which orders the documents with respect to a query

Classical IR Models

Boolean

Vector space

Basic vector space

Extended Boolean model

Probabilistic models

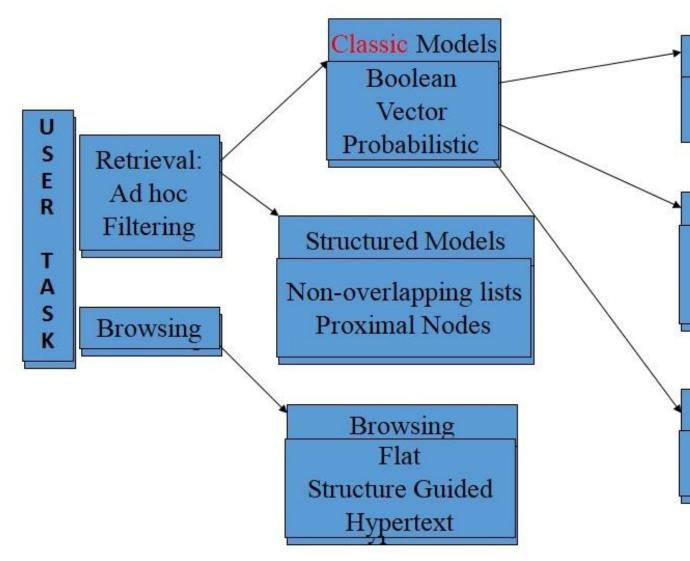
Basic probabilistic model

Bayesian inference networks

Language models

Citation analysis models

Hubs & authorities (Kleinberg, IBM Clever)


Page rank (Google)

Classical IR Models-Cont..

A Taxonomy of Information Retrieval Models

Unit-2/Modeling and Retrieval Evaluation /19CS732 Information Retrieval Techniques /Jebakumar Immanuel D/CSE/SNSCE

Set Theoretic

Fuzzy Extended Boolean

Algebraic Generalized Vector Lat. Semantic Index Neural Networks

Probabilistic Inference Network **Belief Network**

Boolean Model

➢ To process large document collection quickly

➤To allow more flexible matching operation

➢ To allow ranking retrieval system

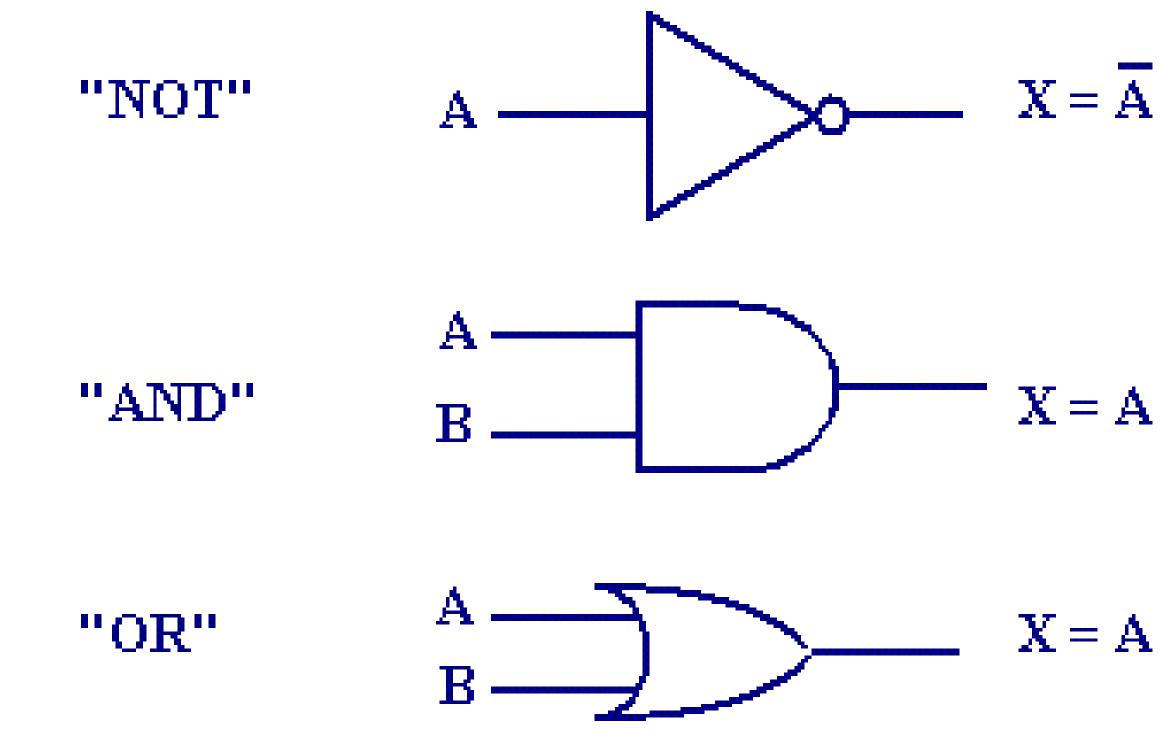
Boolean Model- Cont..

Boolean expression is an expression in a programming language that produces a Boolean value when evaluated, i.e. one of true or false.

Operator	Name of operator	What it means	Example
&&	and	True if and only if both sides are true	wet && cold
Π	or	True if either side is true (or if both are true)	rich famous
!	not	Changes true to false, and false to true	!happy
Λ	exclusive or	True if either side is true (but <i>not</i> both)	walking ^ ridingBus

Boolean Model-Cont..

Examples


The expression "5 > 3" is evaluated as **true**. The expression "3 > 5" is evaluated as **false**. "5>=3" and "3<=5" are equivalent Boolean expressions, both of which are evaluated as **true**. Of course, most Boolean expressions will contain at least one variable (X > 3), and often more (X > Y).

11/20

Boolean Model-Cont..

Unit-2/Modeling and Retrieval Evaluation /19CS732 Information Retrieval Techniques /Jebak<mark>umar Immanuel D/CSE/SNSCE</mark>

$X = A \bullet B = AB$

X = A + B

12/20

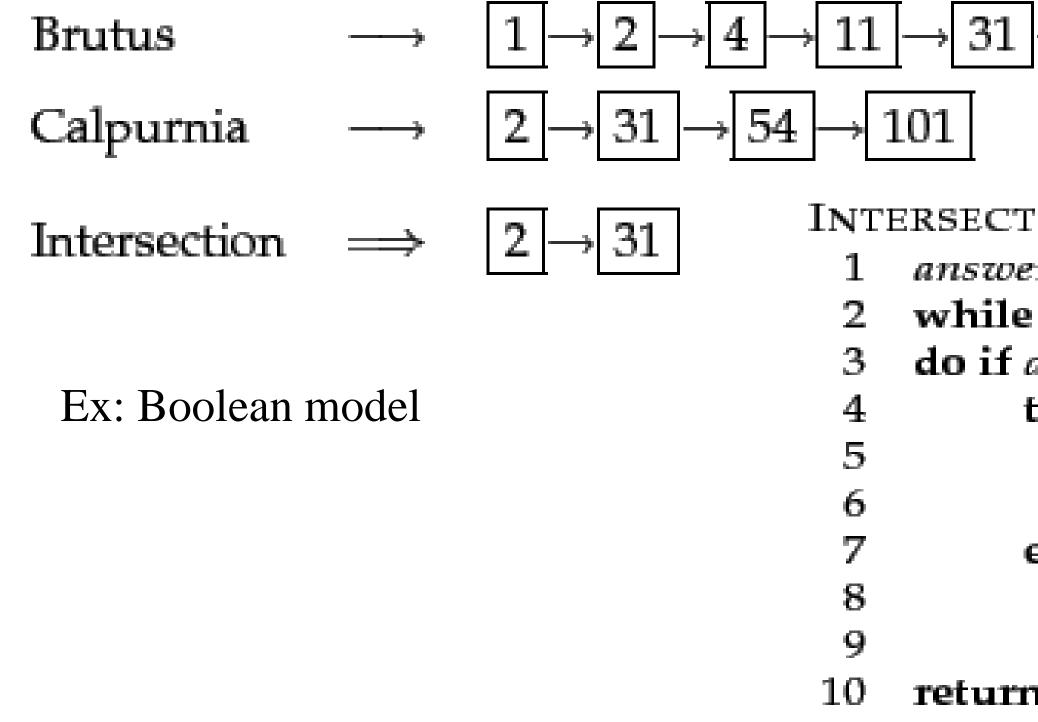
Boolean Model-Problem

How do we process a query using an inverted index and the basic Boolean retrieval model? Consider processing the *simple conjunctive query* : over the inverted index partially shown in Figure <u>1.3</u> (page _). We:

- •Locate Brutus in the Dictionary
- •Retrieve its postings
- •Locate Calpurnia in the Dictionary
- •Retrieve its postings
- •Intersect the two postings lists, as shown in Figure 1.5.

Boolean Model-Problem

	Antony and	Julius Caesar	The Tempest	Hamlet	Of
	Cleopatra				
Antony	1	1	0	0	
Brutus	1	1	0	1	
Caesar	1	1	0	1	
Calpurnia	0	1	0	0	
Cleopatra	1	0	0	0	
mercy	1	0	1	1	
worser	1	0	1	1	


Figure 1.1 A term-document incidence matrix. Matrix element (t, d) is 1 if the play in column *d* contains the word in row *t*, and is 0 otherwise.

thello Macbeth . . .

- 0 0 0 0
- 1 0 1

$$\rightarrow$$
 45 \rightarrow 173 \rightarrow 174

$$f(p_1, p_2)$$

$$fr \leftarrow \langle \rangle$$

$$p_1 \neq \text{NIL and } p_2 \neq \text{NIL}$$

$$docID(p_1) = docID(p_2)$$

$$then \text{ ADD}(answer, docID(p_1))$$

$$p_1 \leftarrow next(p_1)$$

$$p_2 \leftarrow next(p_2)$$

else if $docID(p_1) < docID(p_2)$

$$then p_1 \leftarrow next(p_1)$$

$$else p_2 \leftarrow next(p_2)$$

return answer

Activity

Unit-2/Modeling and Retrieval Evaluation /19CS732 Information Retrieval Techniques /Jebakumar Immanuel D/CSE/SNSCE

Disadvantages

 \succ Simple queries do not work well.

- Complex query language, confusing to end users
- \succ Difficult to control the number of documents retrieved. All

matched documents will be returned.

Difficult to rank output.

• All matched documents logically satisfy the query.

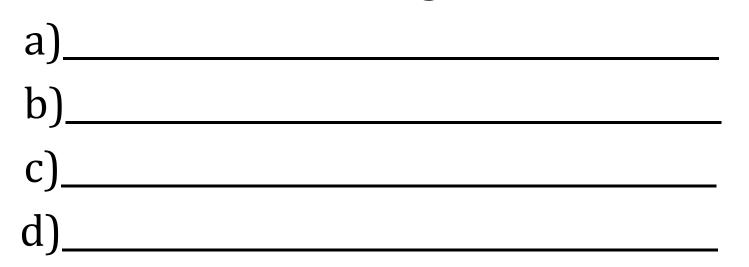
Difficult to perform relevance feedback.

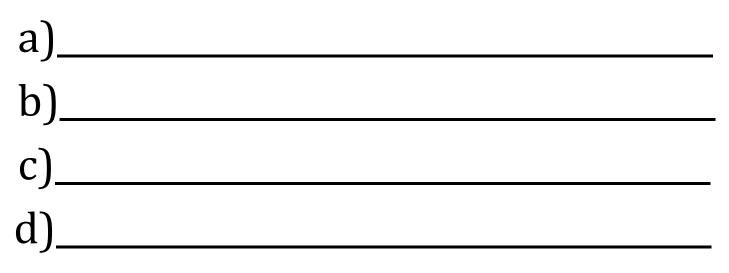
> If a document is identified by the user as relevant or irrelevant, how

should the query be modified?

17/20

Advantages


- \succ Can use very restrictive search
- > Makes experienced users happy
- Clear formalism
 Simplicity
- ≻It is still used in small scale searches like searching emails, files from local hard drives



Assessment 1

1. List out the Advantages of basic model of IRT

2. Identify the model of Basic IRT

TEXT BOOKS:

1. Ricardo Baeza-Yates and Berthier Ribeiro-Neto, —Modern Information Retrieval: The Concepts and Technology behind Search, Second Edition, ACM Press Books, 2011. 2. Ricci, F, Rokach, L. Shapira, B.Kantor, —Recommender Systems Handbook||, First Edition, 2011.

REFERENCES:

1. C. Manning, P. Raghavan, and H. Schütze, —Introduction to Information Retrieval, Cambridge University Press, 2008.

2. Stefan Buettcher, Charles L. A. Clarke and Gordon V. Cormack, —Information Retrieval:

Implementing and Evaluating Search Engines, The MIT Press, 2010.

THANK YOU

