SNS COLLEGE OF ENGINEERING

Kurumbapalayam(Po), Coimbatore - 641107
An Autonomous Institution
Accredited by NAAC-UGC with 'A' Grade
Approved by AICTE, Recognized by UGC \& Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Course Code and Name : 19CS503 - CRYPTOGRAPHY AND NETWORK SECURITY

Unit 2: Symmetric Cryptography
Topic : MATHEMATICS OF SYMMETRIC KEY CRYPTOGRAPHY: Algebraic structures-Groups, Rings, Fields

COMMON ALGEBRAIC STRUCTURES

GROUP (G) / ABELIAN GROUP

denoted by $\{G,$.$\} , is a set of elements$ with a binary operation denoted by

A1: Closure

If a and b belong to G, then $\mathrm{a} . \mathrm{b}$ is also in G .

Abelian
 Group

$\mathrm{a} \cdot \mathrm{b}=\mathrm{b} \cdot \mathrm{a}$ for all a, b in G .

For each a in G, there is an element a^{\prime} in G such that $a \cdot a^{\prime}=a^{\prime} \cdot a=e$.

A4: Inverse element

CYCLIC GROUP

- A group is cyclic if every element is a power of some fixed element
- ie $b=a^{k}$ for some a and every b in group
- a is said to be a generator of the group

RING (R)

Integral Domain

If a, b in R and $a b=0$, then either $a=0$ or $b=0$.

There is an element 1 in R such that $\mathrm{a} 1=1 \mathrm{a}=\mathrm{a}$ for all a in R.

Commutative Ring

$$
\begin{aligned}
& a b=b a \text { for all } a, b \text { in } \\
& R
\end{aligned}
$$

denoted by $\{\mathrm{R},+, *\}$, is a set of elements with two binary operations, called addition and multiplication

If a and b belong to R, then ab is also in R .

$$
a(b+c)=a b+a c
$$

$$
(a+b) c=a c+b c
$$ for all a, b, c in R.

FIELDS (F)

> denoted by $\{\mathrm{F},+, *\}$, is a set of elements with two binary operations, called addition and multiplication

For each a in F, except 0 , there is an element a^{-1} in F such that

$$
\mathrm{aa}^{-1}=\left(\mathrm{a}^{-1}\right) \mathrm{a}=1
$$

WHY ALGEBRAIC STRUCTURES IN CRYPTOGRAPHY?

ASSESSMENT - Complete the chart.

(AI) Closure under addition
(A2) Associativity of addition
(A3) Additive identity
(A4) Additive inverse
(A5) Commutativity of addition
(MI) Closure under multiplication
(M2) Associativity of multiplication
(M3) Distributive law
(M4) Commutativity of multiplication
(M5) Multiplicative identity
(M6) No zero divisors
(M7) Multiplicative inverse

ASSESSMENT SOLUTION - Complete the chart.

			끌	dnod8̆ ue!!əq૪	$\left\{\begin{array}{l} \frac{0}{0} \\ \frac{1}{0} \\ 0 \end{array}\right.$	(AI) Closure under addition (A2) Associativity of addition (A3) Additive identity (A4) Additive inverse (A5) Commutativity of addition (MI) Closure under multiplication (M2) Associativity of multiplication (M3) Distributive law (M4) Commutativity of multiplication (M5) Multiplicative identity (M6) No zero divisors (M7) Multiplicative inverse

REFERENCES

William Stallings, Cryptography and Network Security: Principles and Practice, PHI 3rd Edition, 2006.

THANK YOU

