

# **SNS COLLEGE OF ENGINEERING**

Kurumbapalayam(Po), Coimbatore – 641 107

### **An Autonomous Institution**

Accredited by NAAC-UGC with 'A' Grade Approved by AICTE, Recognized by UGC & Affiliated to Anna University, Chennai

### **DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING**

**Course Code and Name : 19CS503 – CRYPTOGRAPHY AND NETWORK SECURITY** 

**Unit 2: Symmetric Cryptography Topic : MATHEMATICS OF SYMMETRIC KEY CRYPTOGRAPHY: Algebraic** structures-Groups, Rings, Fields





Algebraic Structures / 19CS503 - Cryptography and Network Security / jebakumar Immanuel D/ CSE/ **SNSCE** 



# **GROUP (G) / ABELIAN GROUP**



**Algebraic Structures / 19CS503 - Cryptography and Network Security /** jebakumar Immanuel D/ CSE/ SNSCE



If a and b belong to G, then a . b is also in G.

A2: Associative a.(b.c) = (a.b).cfor all a, b, c in G.

There is an element e in G such that  $a \cdot e = e \cdot a = a$ for all a in G.



## **CYCLIC GROUP**

- A group is cyclic if every element is a power of some fixed element
- ie b = a<sup>k</sup> for some a and every b in group
- a is said to be a generator of the group









M1: Closue under multiplication If a and b belong to R, then ab is also in R.

M2: Associativity of Multiplication

a(bc) = (ab)c for all a, b, c in R

a(b + c) = ab + ac(a + b)c = ac + bcfor all a, b, c in R.



# FIELDS (F)

denoted by {F, +, \*}, is a set of elements with two binary operations, called addition and multiplication







# WHY ALGEBRAIC STRUCTURES IN **CRYPTOGRAPHY?**









(AI) Closure under addition (A2) Associativity of addition (A3) Additive identity (A4) Additive inverse (A5) Commutativity of addition (M3) Distributive law (M5) Multiplicative identity (M6) No zero divisors (M7) Multiplicative inverse

### **ASSESSMENT - Complete the chart.**



- (MI) Closure under multiplication
- (M2) Associativity of multiplication
- (M4) Commutativity of multiplication



### **ASSESSMENT SOLUTION - Complete the chart.**





- (A5) Commutativity of addition
- (MI) Closure under multiplication
- (M2) Associativity of multiplication
- (M4) Commutativity of multiplication



### REFERENCES

# William Stallings, Cryptography and Network Security: Principles and Practice, PHI 3rd Edition, 2006.

### **THANK YOU**

Algebraic Structures / 19CS503 - Cryptography and Network Security / jebakumar Immanuel D/ CSE/ SNSCE

