

DATA PROCESSING FOR AM TECHNOLOGY

Data processing includes the following steps from CAD modeling to Prototype Production.

V SEM- ADDITIVE MANUFACTURING-I UNIT- 2/REVERSE ENGINEERING -K.M.EAZHIL

DATA PROCESSING FOR AM TECHNOLOGY

CAD modeling:

- •The first step in RP is to prepare a CAD model of the object to be fabricated using layer based manufacturing processes.
- •For most of the available RP technologies, a solid model with **complete geometric information** is required.

STL interfacing:

•STL is a file format for approximately defining an object using triangular facets.

•When a CAD model is available, the entire part geometry is converted into STL formations are based on a tolerance for accuracy control.

Part orientation:

- •Before processing for prototyping, a RP engineer needs to figure out the specific orientation in which the prototype model will be produced.
- Part accuracy, the amount of supporting material required and ease of post-processing are important factors influencing part orientation determination.

Support generation:

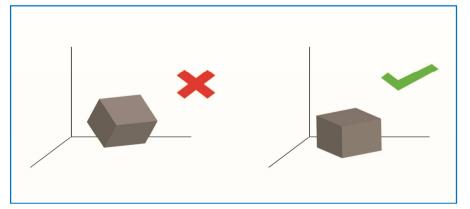
- To define support structures for supporting down-facing areas during part build-up.
- Support generation can be done on the basis of a STL model or the original CAD model.

Model slicing and tool path generation:

In contrast to material removal manufacturing technologies, rapid prototyping technologies refer to a class of layer-based material increase manufacturing processes.

Model production on a RP machine:

The produced tool path is sent to a RP machine for building up the prototype model, including support, layer by layer.


Post-processing:

- Depending on the RP process involved, a post processing step might be needed for postcuring in the case of
 - stereolithography, for curing
 - furnace sintering in the case of SLS,
 - for removing the support structures
 - surface polishing in the cases of most other RP processes.

- Part orientation and support generation are two closely related issues in layered manufacturing.
- •By selecting an optimal part orientation for model prototyping, it is possible to shorten build time and minimize the overall prototyping cost. Part orientation has a significant effect on the final part quality.

SIS INSTITUTIONS

PART ORIENTATION

- There are different models for part orientation determination, they are
 - 1. A generic cost model
 - 2. Part orientation for surface quality improvement
 - 3. Part orientation with minimum support
 - 4. Part orientation with multiple objective optimization

A generic cost model:

The consolidated generic cost model is defined as, where the cost components are:

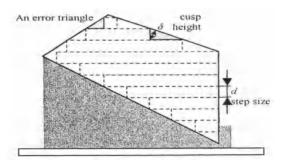
$$C_{tot} = C_{pre} + C_{build} + C_{mat} + C_{post}$$

 C_{pre} direct cost related to pre-processing;

 C_{build} machine utilization cost for building the prototype model;

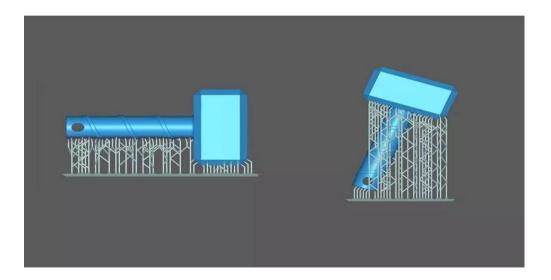
 C_{mat} material cost including part modeling material and support material, if different;

and


 C_{post} post-processing cost.

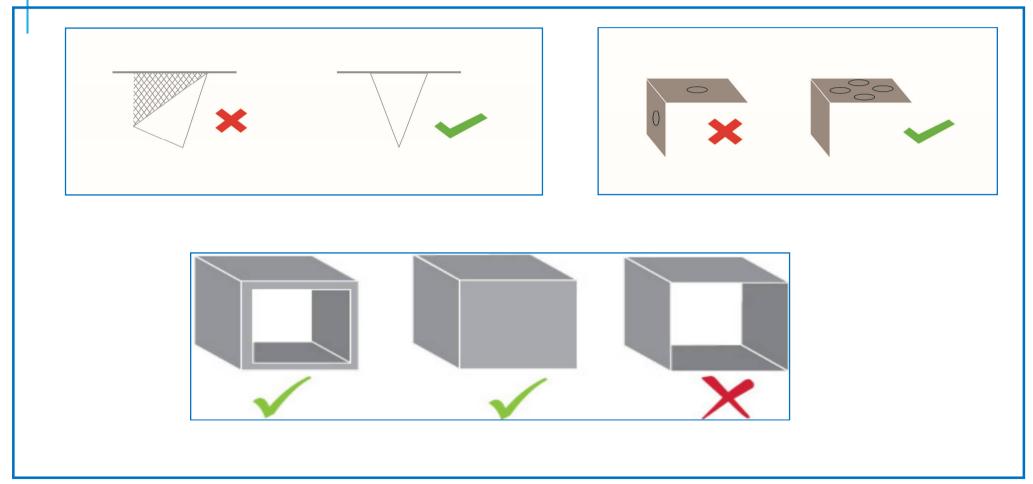
2. Part orientation for surface quality improvement

- •While minimizing the overall cost, the surface quality of the final prototype model must also be observed.
- •If a small layer thickness is used, one would obtain a fine part surface, but the overall building time will be longer and hence the surface quality is improved at a cost.



3. Part orientation with minimum support

Part orientation will affect the volume of material required for model support and hence extend building time for some RP processes.



4. Part orientation with multiple objective optimization:

- There are many factors that need to be considered when searching for an optimal part orientation.
 - maximize the area of the base surface
 - minimize the number of sloped surfaces
 - minimize the total area of overhanging surfaces
 - Maximize the number of perpendicular surfaces
 - maximize the number of holes with their axes in the slicing direction

V SEM- ADDITIVE MANUFACTURING-I UNIT- 2/REVERSE ENGINEERING -K.M.EAZHIL